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Transient Phenomena in Neutron Stars

• Crustal heating and subsequent thermal 
relaxation in accreting neutron stars. 	


• Excitation of shear modes during magnetar 
giant flares.    
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cool down to equilibrium on a much longer timescale of several
years (Rutledge et al. 2002). It is therefore possible to monitor
the cooling of such quasi-persistent transients with satellites
such as Chandra or XMM-Newton. The timescale of the cooling
is dependent on the properties of the material in the crust, such
as its thermal conductivity, and structures in the cooling curve
can give information about the nature and location of heating
sources in the crust (Brown & Cumming 2009).

Since the advent of Chandra and XMM-Newton, only a
handful of NS transients have entered quiescence after long-
duration (year or longer) outbursts. KS 1731–260 and MXB
1659–29 entered quiescence in 2001 after outbursts lasting
around 12.5 and 2.5 yr, respectively. Both sources were observed
to cool down to a constant level over a period of a few years
(Wijnands et al. 2001, 2002, 2003, 2004; Wijnands 2002, 2004;
Rutledge et al. 2002; Cackett et al. 2006, 2008), though a recent
observation of KS 1731–260 at more than 3000 days post-
outburst suggests it may still be cooling slowly (E. M. Cackett
et al. 2010, in preparation). The observed cooling timescales
were interpreted to imply a high thermal conductivity for the
crust, in agreement with more recent findings from the fitting
of theoretical models to the cooling curves (Shternin et al.
2007; Brown & Cumming 2009). In 2008, EXO 0748–676
entered quiescence after active accretion for over 24 yr. Swift
and Chandra observations of the source in the first half of the
year since the end of the outburst indicate very slow initial
cooling (Degenaar et al. 2009). In contrast to KS 1731–260
and MXB 1659–29, EXO 0748–676 has shown a significant
non-thermal component in its spectra in addition to the thermal
component. Such a non-thermal component has been seen for
many quiescent NS-LMXBs. It is usually well fitted with a
simple power law of photon index 1–2 and typically dominates
the spectrum above a few keV (Campana et al. 1998a). A number
of quiescent NS sources have spectra which are completely
dominated by the power-law component and do not require a
thermal component, e.g., the millisecond X-ray pulsar SAX
J1808.4–3658 (Heinke et al. 2007) and the globular cluster
source EXO 1745–248 (Wijnands et al. 2005). The power-law
component is common among millisecond X-ray pulsars (see,
e.g., Campana et al. 2005), but its origin is poorly understood.
Suggested explanations include residual accretion, either onto
the NS surface or onto the magnetosphere, and a shock from a
pulsar wind (see, e.g., Campana et al. 1998a). We note that it has
also been argued that low-level spherical accretion onto an NS
surface can produce a spectrum with a thermal shape (Zampieri
et al. 1995).

1.1. XTE J1701–462

XTE J1701–462 (hereafter J1701) was discovered with the
All-Sky Monitor (ASM; Levine et al. 1996) on board the Rossi
X-Ray Timing Explorer (RXTE) on 2006 January 18 (Remillard
& Lin 2006), shortly after entering an outburst (see Figure 1).
Re-analysis of earlier ASM data further constrained the start of
the outburst to a date between 2005 December 27 and 2006
January 4 (Homan et al. 2007). During the ≃1.6-year-long
outburst the source became one of the most luminous NS-
LMXBs ever seen in the Galaxy, reaching a peak luminosity
of ≃1.5 LEdd, and it accreted at near-Eddington luminosities
throughout most of the outburst (Lin et al. 2009b). The source
entered quiescence in early 2007 August (see Section 2.6 for
a discussion of our definition of quiescence for this source).
During the outburst the source was monitored on an almost daily
basis with RXTE. Spectral and timing analysis of the early phase
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Figure 1. RXTE ASM light curve of XTE J1701–462 showing the 2006–2007
outburst and the subsequent quiescent period. Data points represent 1 day
averages. The upper row of vertical bars indicates the times of the ten Chandra
observations made after the end of the outburst; the lower row indicates the
times of the three XMM-Newton observations. No other observations of XTE
J1701–462 sensitive enough to detect the source have been made since the
outburst ended.

of the outburst is presented in Homan et al. (2007), and Lin et al.
(2009b) give a detailed spectral analysis of the entire period of
active accretion. In the early and most luminous phase of its
outburst, J1701 exhibited all spectral and timing characteristics
typical of a Z source, and is the only transient NS-LMXB ever
observed to do so. During the outburst the behavior of the source
evolved through all spectral subclasses of low-magnetic-field
NS-LMXBs (Hasinger & van der Klis 1989), starting as a Cyg-
like Z source, then smoothly evolving into a Sco-like Z source
(Kuulkers et al. 1997), and finally into an atoll source (first a
bright GX-like one and subsequently a weaker bursting one).
This evolution will be discussed in detail in an upcoming paper
(J. Homan et al. 2010, in preparation). The unique behavior of
the source in conjunction with the dense coverage by RXTE has
made it possible to address long-standing questions regarding
the role of mass accretion rate in causing these subclasses and the
spectral states within each subclass (Lin et al. 2009b). Toward
the end of the outburst J1701 exhibited three type I X-ray
bursts, the latter two of which showed clear photospheric radius
expansion. From these Lin et al. (2009a) derive a best-estimate
distance to the source of 8.8 ± 1.3 kpc, using an empirically
determined Eddington luminosity for radius expansion bursts
(Kuulkers et al. 2003).

J1701 provides a special test case for NS cooling. It accreted
for a shorter time than the three cooling transients with long-
duration outbursts mentioned above, but for a longer time than
regular transients. Moreover, the level at which it accreted is
higher than for any other NS transient observed. This source
therefore allows new parameter space in NS cooling to be
probed. The close monitoring of the source with RXTE also
makes it possible to get a good estimate for the total fluence
of the outburst. This gives information about the total mass
accreted and hence about the heat generated from crustal
heating, a crucial input parameter for theoretical models of
the cooling. Flux values derived from spectral fits to RXTE
data (spectra from 32 s time bins, with linear interpolation
between data points; see Figure 3 in Lin et al. 2009b) imply a
total bolometric energy output (corrected for absorption) during
the outburst of ≃1.0 × 1046 erg for an assumed distance of
8.8 kpc and system inclination of 70◦ (D. Lin 2009, private
communication; see Lin et al. 2009b for details on the spectral
fitting). This value is likely to be uncertain by a factor of ≃2–4
due to uncertainties in the distance and inclination of the system,

XMM 

CHANDRA 

RXTE 
Fridriksson et al. (2010)

Accretion Outburst



Time in days 

Quiescence 
Cooling 

Outburst 
Heating 

X
-r

ay
 lu

m
in

os
ity

 
States of an Accreting Neutron Star

accretion 	

luminosity:	

high variability

thermal 	

emission:	

small variability

Cooling

No. 1, 2010 RAPID COOLING OF THE NEUTRON STAR IN XTE J1701–462 271

cool down to equilibrium on a much longer timescale of several
years (Rutledge et al. 2002). It is therefore possible to monitor
the cooling of such quasi-persistent transients with satellites
such as Chandra or XMM-Newton. The timescale of the cooling
is dependent on the properties of the material in the crust, such
as its thermal conductivity, and structures in the cooling curve
can give information about the nature and location of heating
sources in the crust (Brown & Cumming 2009).

Since the advent of Chandra and XMM-Newton, only a
handful of NS transients have entered quiescence after long-
duration (year or longer) outbursts. KS 1731–260 and MXB
1659–29 entered quiescence in 2001 after outbursts lasting
around 12.5 and 2.5 yr, respectively. Both sources were observed
to cool down to a constant level over a period of a few years
(Wijnands et al. 2001, 2002, 2003, 2004; Wijnands 2002, 2004;
Rutledge et al. 2002; Cackett et al. 2006, 2008), though a recent
observation of KS 1731–260 at more than 3000 days post-
outburst suggests it may still be cooling slowly (E. M. Cackett
et al. 2010, in preparation). The observed cooling timescales
were interpreted to imply a high thermal conductivity for the
crust, in agreement with more recent findings from the fitting
of theoretical models to the cooling curves (Shternin et al.
2007; Brown & Cumming 2009). In 2008, EXO 0748–676
entered quiescence after active accretion for over 24 yr. Swift
and Chandra observations of the source in the first half of the
year since the end of the outburst indicate very slow initial
cooling (Degenaar et al. 2009). In contrast to KS 1731–260
and MXB 1659–29, EXO 0748–676 has shown a significant
non-thermal component in its spectra in addition to the thermal
component. Such a non-thermal component has been seen for
many quiescent NS-LMXBs. It is usually well fitted with a
simple power law of photon index 1–2 and typically dominates
the spectrum above a few keV (Campana et al. 1998a). A number
of quiescent NS sources have spectra which are completely
dominated by the power-law component and do not require a
thermal component, e.g., the millisecond X-ray pulsar SAX
J1808.4–3658 (Heinke et al. 2007) and the globular cluster
source EXO 1745–248 (Wijnands et al. 2005). The power-law
component is common among millisecond X-ray pulsars (see,
e.g., Campana et al. 2005), but its origin is poorly understood.
Suggested explanations include residual accretion, either onto
the NS surface or onto the magnetosphere, and a shock from a
pulsar wind (see, e.g., Campana et al. 1998a). We note that it has
also been argued that low-level spherical accretion onto an NS
surface can produce a spectrum with a thermal shape (Zampieri
et al. 1995).

1.1. XTE J1701–462

XTE J1701–462 (hereafter J1701) was discovered with the
All-Sky Monitor (ASM; Levine et al. 1996) on board the Rossi
X-Ray Timing Explorer (RXTE) on 2006 January 18 (Remillard
& Lin 2006), shortly after entering an outburst (see Figure 1).
Re-analysis of earlier ASM data further constrained the start of
the outburst to a date between 2005 December 27 and 2006
January 4 (Homan et al. 2007). During the ≃1.6-year-long
outburst the source became one of the most luminous NS-
LMXBs ever seen in the Galaxy, reaching a peak luminosity
of ≃1.5 LEdd, and it accreted at near-Eddington luminosities
throughout most of the outburst (Lin et al. 2009b). The source
entered quiescence in early 2007 August (see Section 2.6 for
a discussion of our definition of quiescence for this source).
During the outburst the source was monitored on an almost daily
basis with RXTE. Spectral and timing analysis of the early phase
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Figure 1. RXTE ASM light curve of XTE J1701–462 showing the 2006–2007
outburst and the subsequent quiescent period. Data points represent 1 day
averages. The upper row of vertical bars indicates the times of the ten Chandra
observations made after the end of the outburst; the lower row indicates the
times of the three XMM-Newton observations. No other observations of XTE
J1701–462 sensitive enough to detect the source have been made since the
outburst ended.

of the outburst is presented in Homan et al. (2007), and Lin et al.
(2009b) give a detailed spectral analysis of the entire period of
active accretion. In the early and most luminous phase of its
outburst, J1701 exhibited all spectral and timing characteristics
typical of a Z source, and is the only transient NS-LMXB ever
observed to do so. During the outburst the behavior of the source
evolved through all spectral subclasses of low-magnetic-field
NS-LMXBs (Hasinger & van der Klis 1989), starting as a Cyg-
like Z source, then smoothly evolving into a Sco-like Z source
(Kuulkers et al. 1997), and finally into an atoll source (first a
bright GX-like one and subsequently a weaker bursting one).
This evolution will be discussed in detail in an upcoming paper
(J. Homan et al. 2010, in preparation). The unique behavior of
the source in conjunction with the dense coverage by RXTE has
made it possible to address long-standing questions regarding
the role of mass accretion rate in causing these subclasses and the
spectral states within each subclass (Lin et al. 2009b). Toward
the end of the outburst J1701 exhibited three type I X-ray
bursts, the latter two of which showed clear photospheric radius
expansion. From these Lin et al. (2009a) derive a best-estimate
distance to the source of 8.8 ± 1.3 kpc, using an empirically
determined Eddington luminosity for radius expansion bursts
(Kuulkers et al. 2003).

J1701 provides a special test case for NS cooling. It accreted
for a shorter time than the three cooling transients with long-
duration outbursts mentioned above, but for a longer time than
regular transients. Moreover, the level at which it accreted is
higher than for any other NS transient observed. This source
therefore allows new parameter space in NS cooling to be
probed. The close monitoring of the source with RXTE also
makes it possible to get a good estimate for the total fluence
of the outburst. This gives information about the total mass
accreted and hence about the heat generated from crustal
heating, a crucial input parameter for theoretical models of
the cooling. Flux values derived from spectral fits to RXTE
data (spectra from 32 s time bins, with linear interpolation
between data points; see Figure 3 in Lin et al. 2009b) imply a
total bolometric energy output (corrected for absorption) during
the outburst of ≃1.0 × 1046 erg for an assumed distance of
8.8 kpc and system inclination of 70◦ (D. Lin 2009, private
communication; see Lin et al. 2009b for details on the spectral
fitting). This value is likely to be uncertain by a factor of ≃2–4
due to uncertainties in the distance and inclination of the system,
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Figure 4. Total unabsorbed luminosity in the 0.5–10 keV band (top panel),
redshifted effective NS surface temperature (middle panel), and unabsorbed
power-law flux in the 0.5–10 keV band (bottom panel) during quiescence. The
solid curve in the temperature panel is the best-fit exponential decay cooling
curve (with the sixth and seventh data points excluded from the fit), and the
dashed line represents the best-fit constant offset to the decay.

2.6. Cooling Curves

Figure 2 shows the transition from the final stage of outburst
to quiescence. Plotted is the total unabsorbed luminosity in the
0.5–10 keV band for the 37 RXTE observations made in the
period 2007 July 17–August 7, and the three Swift observa-
tions discussed above, as well as the first three Chandra and
XMM-Newton observations. The luminosity decreased by a fac-
tor of ∼2000 in the final ≃13 days of the outburst before starting
a much slower decay. This period of low-level and slowly chang-
ing (compared to the outburst phase) emission, taking place
after the steep drop in luminosity, is what we refer to as the
quiescent phase (see also the top panel in Figure 4). Low-level
accretion may be occurring during quiescence, but this current
phase is clearly distinct from the much more luminous and vari-
able outburst phase, during which accretion took place at much
higher rates (and which we also refer to as the period of “ac-
tive” accretion). The end of the outburst is tightly constrained
to have occurred sometime in the ≃4.3 day interval between
the final Swift observation and the first Chandra observation.
To get a more precise estimate for the end time of the out-

burst, here denoted by t0, we fit simple exponential decay curves
through the three Swift data points and the three Chandra and
XMM-Newton points in Figure 2. From the intersection of those
two curves we define t0 as MJD 54322.13 (2007 August 10
03:06 UT), i.e., ≃2.8 days before the first Chandra observation.

Table 3 lists temperatures and fluxes derived from the main
fit to the Chandra and XMM-Newton spectra discussed in
Section 2.5.2. Figure 4 shows a plot using results from this
fit. The top two panels show the total unabsorbed 0.5–10 keV
luminosity and the inferred effective NS surface temperature (as
observed at infinity). The first five data points, taken in the first
≃175 days of quiescence, show a fast drop in temperature. How-
ever, the sixth data point (XMM-3, at ≃226 days) shows a large
increase in both temperature and luminosity, and the following
Chandra observation (CXO-4) also has a higher inferred tem-
perature than before the increase. This is inconsistent with the
monotonic decrease in temperature expected for a cooling NS
crust. The last six Chandra observations all have temperatures
similar to or slightly lower than the one immediately preceding
XMM-3 (i.e., CXO-3). We assume that those are unaffected by
whatever caused the “flare-like” behavior in the sixth and sev-
enth observations, and when fitting cooling models to the data
we exclude both XMM-3 and CXO-4 but include the subsequent
observations (although some fits excluding only XMM-3 were
also made; see below). We defer further discussion of the flare
to the end of this section and Section 3.3.

We will now describe our fitting of the derived temperatures
with cooling curve models. All the fits were performed with
Sherpa, CIAO’s modeling and fitting package (Freeman et al.
2001); errors were estimated with the confidence method.12

We first fitted our temperature data with an exponential decay
cooling curve plus a constant offset, i.e., a function of the form
T ∞

eff (t) = T ′ exp[−(t−t0)/τ ]+Teq, with t0 kept fixed at the value
mentioned above. Shifts in the value of t0 do not affect derived
values for τ or Teq. The flare observations XMM-3 and CXO-4
were excluded from the fitting. We performed the temperature
fit for data from the main spectral fit (1 in Table 2), and also for
spectral parameter values corresponding to five other fits (2, 3,
7, 8, and 9), to gauge the effects on the cooling fit parameters.
The derived parameter values are shown in Table 4. The main
fit cooling curve is shown in Figure 4 along with the best-
fit constant offset (dashed line). The best-fit e-folding time is
τ = 117+26

−19 days with an offset of Teq = 125.0±0.9 eV. For the
other values of the NS parameters (mass, radius, and distance),
the temperature values are systematically shifted by typically
5–10 eV, but the derived decay timescale is not affected to a
significant extent. The effects of changing the value of the tied
power-law index will be discussed in Section 2.6.1. Including
CXO-4 in the fit (but still excluding XMM-3) gives a longer
timescale of τ = 187+49

−39 days; the equilibrium temperature is
not significantly affected.

As will be discussed in Section 3.2, a more physically
motivated cooling curve model is a broken power law leveling
off to a constant at late times. We therefore also fitted a broken
power-law model, excluding XMM-3 and CXO-4 as before, to
temperature data corresponding to the same six spectral fits as
before. The derived break times and power-law slopes are shown
in Table 4. The best-fit broken power-law curve to data from the
main spectral fit is shown in Figure 5 (solid curve). The data
indicate that a break in the model is needed; a simple power law
does not provide an adequate fit (χ2

ν = 2.45 for 9 dof, compared

12 See documentation at the Sherpa Web site: http://cxc.harvard.edu/sherpa/.
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Observations:  

•After a period of intense 
accretion the neutron star 
surface cools on a time 
scale of years.

!
•This relaxation was first 
discovered in 2001 and 6 
sources have been studied 
to date. 

!
•Expected rate of 
detecting new sources 

~ 1/year.  

Figure from Rudy Wijnands (2013)

All known Quasi-persistent sources with post outburst cooling
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Explosions on Magnetars: Giant Flares 

SGRs exhibit powerful outburst ~ 1046 ergs/s

http://www.physics.mcgill.ca/~pulsar/magnetar/main.html

Anomalous X-Ray Pulsars (10)	

Soft Gamma Repeaters (8)	

!

Inferred to have surface fields 
of the order of 1015 Gauss. 

SGR 0525-66 : (1979) 
SGR 1806-20   (1979/1986/2004)*  
SGR 1900+14 (1979/1986/1998) 
SGR 1627-41  (1998)

SGR 1806-20: 2004 Flare

Hurley et al. (2005)

http://www.physics.mcgill.ca/~pulsar/magnetar/main.html


QPOs are likely to be shear modes in the solid crust
Duncan (1998), Strohmayer, Watts (2006)
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Neutron Star Crust: 
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Figure 10: Some theoretical predictions of T
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and �, vs neutron k
F

, for the
neutron 1S

0

gap in uniform pure neutron matter. The value of k
F

corresponding
to the transition from the crust to the core is indicated. See text for description.

Transcribed to the neutron star context, the range of Fermi momenta for
which these neutron 1S

0

gaps are non vanishing corresponds mostly to the
dripped neutrons in the inner crust. The presence of nuclei, or nuclear clus-
ters in the pasta phase, may modify the sizes of these gaps from their values in
uniform matter. The coherence length ⇠ of the dripped neutrons is larger than
the sizes of nuclei, leading to proximity e↵ects. This issue has received some
attention, see, e.g., [38, 39, 40, 41], and position dependent gaps, from inside
to outside of nuclei, have been calculated. However, in most of the crust ⇠ is
smaller than the internuclear distance, and the size of the gap far outside the
nuclei is close to its value in uniform matter.

The isotropic 1S
0

proton gap

The magnitudes of proton 1S
0

gaps are similar to those of neutrons, but with the
important di↵erence that, in the neutron star context in which beta equilibrium
prevails, protons are immersed within the neutron liquid, and constitute only
a small fraction of the total baryon number (3 to 20% in the density range
where they are expected to be superconducting). Proton-neutron correlations
cause the e↵ective mass of the proton to be smaller than that of the neutron,
a simple e↵ect that reduces the size of the proton 1S

0

gap compared to that of
the neutron.

Several theoretical predictions of T
c

for the proton 1S
0

gap are shown in
Fig. 11: “CCY” from [42], “T” from [43], and “AO” from [44] that are among
the first historical calculations, whereas “BCLL” from [30], “CCDK” from [33],
and “EEHO” from [45] are more recent results. All of these calculations were
performed within the BCS approximation and very few works have gone beyond
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Transport properties dominated by  

• Outer crust: Electrons and lattice phonons. 	


• Inner crust: Electrons, lattice phonons and 
superfluid phonons. 	


• Core: Electrons, superfluid phonons, and 
angulons (Goldstone bosons associated with 
breaking rotational  symmetry).     

This is good news. Describing low energy properties of 
dense Fermi liquids is hard ! Low energy theory of 
phonons is simpler. 
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Electrons are (nearly) free

•Band gaps are small and restricted to small patches in 
the Fermi surface. 	

! Ve�i
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•Pairing energy is negligible.  

• Electrons are dense,degenerate and relativistic.   
ne = Z nI kFe ⇡ EFe ' 25� 75 MeV � me
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Figure 3. The regimes where collective excitations dominate over single particle excitation
for ions and neutrons. Scales of relevance to electron dynamics are also shown.

§4., the gap affects the Umklapp process for T � Tum = vt ⇥U where ⇥U is the band gap
and vt is the velocity of transverse phonons [9]. For nearly free electrons ⇥U =VkFe , where
VkFe ⇧ 4⇤Ze2 nI/k2

Fe = (4e2/3⇤) kFe is the Fourier component of the lattice potential at scale
kFe .

Although electrons in the inner crust are as degenerate as terrestrial superconductors
with T/TF ⇤ 10�5 � 10�4, where TF = µe, the critical temperature is negligibly small be-
cause here electrons are relativistic. They move too quickly to adequately experience the
attraction due to retardation effects in the electron-phonon potential, and consequently the
critical temperature T c

e ⇧ ⇧p exp(�vF/e2)⌅ ⇧p is negligibly small [10]. Thus, the degen-
erate Fermi gas model provides an excellent description of electronic properties for T ⇥ TF .
In this regime, the density of states Ne(0) = µ2

e/⇤2 is large and this greatly enhances their
contribution to thermal and transport properties at low temperature.

3.3. Neutrons

Due to strong attractive interactions, neutrons in the inner crust form Cooper pairs and be-
come superfluid. The gap in the single particle spectrum is denoted by �n increases from
zero at neutron drip to a maximum value ⇤ 1 MeV at a density ⌅ ⇧ 1013 g/cm3 and de-
creases therafter. The number of thermally excited neutron quasi-particles is exponentially
suppressed when T ⌅ �n and their contribution to thermal and transport properties is typ-
ically negligible. However, depending on the variation of the gap with density, a sizable
fraction of the inner crust close to neutron drip and the vicinity of the crust-core interface
can be normal in accreting neutron stars.

Separation of Scales
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Low Energy Theory of Phonons 

Neutron superfluid: Goldstone excitation is the phase 
of the condensate. 

Proton (clusters) move collectively on lattice sites. 
Displacement is a good coordinate. 
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Low Energy Theory of Phonons 

�i(x, y, z)

Neutron superfluid: Goldstone excitation is the phase 
of the condensate. 

Proton (clusters) move collectively on lattice sites. 
Displacement is a good coordinate. 

neutrons

protons

neutrons

protons

“coarse-grain”

Collective 
coordinates: 

Vector Field: 	

Scalar Field:

�i(r, t)
�(r, t)

⇥⇥�(r)⇥⇥(r)⇤ = |�| exp (�2i �)



Symmetries & Derivative Expansion

1 Introduction

The low energy dynamics of strongly interacting solids and superfluids can be systematically studied
through an effective theory formulation in terms of weakly interacting phonons - the collective degrees
of freedom in these systems. In the familiar case of solids, one longitudinal phonon and two transverse
phonons arise as Goldstone modes due to the breaking of translation symmetry. In the case of a
superfluid, one mode called the superfluid phonon arises due to the breaking of the global U(1) symmetry
associated with phase rotations of a field operator 1. In special cases the ground state of the system
can spontaneously break both these symmetries. A particularly simple but non-trivial realization is a
solid immersed in a superfluid with strong interactions between the particles that form the solid and the
superfluid respectively. It is likely that a substantial region in the crust of a neutron star is occupied by
such a phase [1] and its presence may affect neutron star phenomenology. From general considerations
we can argue that the inner crust of neutron stars features a lattice of neutron rich nuclei in a bath
of unbound superfluid neutrons. The lattice sites can be viewed as clusters of protons, with a fraction
of neutrons “entrained” on the clusters [2, 3]. Other intrinsically more complex phases where a single
component exhibits both superfluid and solid characteristics have also been proposed. They include the
supersolid phase of 4He [4] and the Larkin Ovchinnikov Fulde Ferrell (LOFF) phases [5, 6] in polarized
fermion superfluids. Although these systems can in principle be realized terrestrially, they have proven
to be challenging to explore in experiments [7]. Nonetheless in all these cases the low energy dynamics
is described by an effective theory of four Goldstone modes [8]. The associated fields for the lattice
phonons are ξa=1..3(r, t) and are related to space-time dependent deformations of the lattice. Similarly,
the field associated with the superfluid mode φ(r, t) is related to the space-time dependent phase of the
condensate. Because of interactions, such as those between the neutrons and the protons in the neutron
star crust, one can not in general treat the two sectors separately and a unified treatment is required.
It is the aim of this paper to provide such a framework.

The low energy theory is described in terms of the fields φ and ξa. The symmetries associated
with translation and number conservation require that the low energy theory be invariant under the
transformation ξa=1..3(r, t) → ξa=1..3(r, t) + aa=1..3 and φ(r, t) → φ(r, t) + θ where aa=1..3 and θ are
constant shifts. This naturally implies that the low energy lagrangian can contain only spatial and
temporal gradients of these fields. Further, by requiring cubic symmetry for the crystalline state, the
quadratic part of the effective lagrangian is given by,

L =
f2
φ

2
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ρ ∂0φ∂aξ
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(1)

where higher order terms involve higher powers of the gradients of these fields, and ξab = (∂aξb+∂bξa)−
2
3∂cξ

cδab. In the uncoupled case, the low energy coefficients (LECs) appearing above, such as ρ, µ,K
are related to the mass density, the shear modulus, and the compressibility of the solid respectively.
They determine the velocities of the phonons in the solid phase. Similarly, the velocity of the phonon
in the pure superfluid case is given by vφ. In the presence of strong coupling between the solid and
superfluid these coefficients are modified. For example, the coefficient ρ in Eq. 1 differs from the usual
mass density of the pure lattice component due interactions that entrain the superfluid, and the mixing
coefficient gmix couples superfluid and lattice dynamics. As we will show Galilean invariance relates
gmix to the modifications of ρ and vφ due to entrainment [9]. An analysis of these modifications in
the context of the neutron star crust due to the underlying interaction between neutrons and protons
was the original motivation for this study. In this case, the mixing coefficient gmix is relevant for heat
transport properties in the inner crust [10], and the eigenmodes of the coupled superfluid-solid system
could play a role in explaining the observed quasi-periodic oscillations in magnetars flares [11].

We will present a general proof that the functional form of the lowest-order Lagrangian is completely
specified by the thermodynamic pressure in the presence of constant external fields that couple to the

1The U(1) symmetry is related to particle number conservation and we will refer to this as a phase symmetry. Its
breaking simply refers to the choice of a ground state: total number is conserved and the continuity equation remains
valid.
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The low energy 
theory must respect 
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Hamiltonian

{
Only derivative terms are allowed. Lagrangian density for the phonon 
system with cubic symmetry:
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phonons are ξa=1..3(r, t) and are related to space-time dependent deformations of the lattice. Similarly,
the field associated with the superfluid mode φ(r, t) is related to the space-time dependent phase of the
condensate. Because of interactions, such as those between the neutrons and the protons in the neutron
star crust, one can not in general treat the two sectors separately and a unified treatment is required.
It is the aim of this paper to provide such a framework.

The low energy theory is described in terms of the fields φ and ξa. The symmetries associated
with translation and number conservation require that the low energy theory be invariant under the
transformation ξa=1..3(r, t) → ξa=1..3(r, t) + aa=1..3 and φ(r, t) → φ(r, t) + θ where aa=1..3 and θ are
constant shifts. This naturally implies that the low energy lagrangian can contain only spatial and
temporal gradients of these fields. Further, by requiring cubic symmetry for the crystalline state, the
quadratic part of the effective lagrangian is given by,

L =
f2
φ

2
(∂0φ)

2 −
v2φf

2
φ

2
(∂iφ)

2 +
ρ

2
∂0ξ

a∂0ξ
a −

1

4
µ(ξabξab)−

K

2
(∂aξ

a)(∂bξ
b)

−
α

2

∑

a=1..3

(∂aξ
a∂aξ

a) + gmixfφ
√
ρ ∂0φ∂aξ

a + · · · ,
(1)

where higher order terms involve higher powers of the gradients of these fields, and ξab = (∂aξb+∂bξa)−
2
3∂cξ

cδab. In the uncoupled case, the low energy coefficients (LECs) appearing above, such as ρ, µ,K
are related to the mass density, the shear modulus, and the compressibility of the solid respectively.
They determine the velocities of the phonons in the solid phase. Similarly, the velocity of the phonon
in the pure superfluid case is given by vφ. In the presence of strong coupling between the solid and
superfluid these coefficients are modified. For example, the coefficient ρ in Eq. 1 differs from the usual
mass density of the pure lattice component due interactions that entrain the superfluid, and the mixing
coefficient gmix couples superfluid and lattice dynamics. As we will show Galilean invariance relates
gmix to the modifications of ρ and vφ due to entrainment [9]. An analysis of these modifications in
the context of the neutron star crust due to the underlying interaction between neutrons and protons
was the original motivation for this study. In this case, the mixing coefficient gmix is relevant for heat
transport properties in the inner crust [10], and the eigenmodes of the coupled superfluid-solid system
could play a role in explaining the observed quasi-periodic oscillations in magnetars flares [11].

We will present a general proof that the functional form of the lowest-order Lagrangian is completely
specified by the thermodynamic pressure in the presence of constant external fields that couple to the

1The U(1) symmetry is related to particle number conservation and we will refer to this as a phase symmetry. Its
breaking simply refers to the choice of a ground state: total number is conserved and the continuity equation remains
valid.

2

where
Cirigliano, Reddy, Sharma 2011



Identifying the Low Energy Constants 

• LECs must be related to thermodynamic properties. 	


• Each gradient produces a unique deformation of the 
ground state.  

• The energy cost associated with these (small) 
deformations provide the LECs. 

Cirigliano, Reddy, Sharma 2011

For a rigorous derivation of LECs in terms of 
thermodynamic derivatives see  arXiv:1102.5379
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Phonon mixing and drag
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Entrainment 

n (fm−3) ρ (g cm−3) Z Acell A Ab

0.0003 4.98 × 1011 50 200 170 175

0.001 1.66 × 1012 50 460 179 383

0.005 8.33 × 1012 50 1140 198 975

0.01 1.66 × 1013 40 1215 170 1053

0.02 3.32 × 1013 40 1485 180 1389

0.03 4.98 × 1013 40 1590 173 1486

0.04 6.66 × 1013 40 1610 216 1462

0.05 8.33 × 1013 20 800 87 586

0.06 1.00 × 1014 20 780 85 461

0.07 1.17 × 1014 20 714 76 302

0.08 1.33 × 1014 20 665 65 247

TABLE I: Ground-state composition of the inner crust of a neutron star (Z,Acell, A as defined in

Section II), as obtained in Ref. [3], for various baryon densities n/mass densities ρ. The effective

number of bound nucleons Ab was calculated including band structure effects in Ref. [9].

calculated by Friedman and Pandharipande [26] using realistic two- and three-body forces.

This equation of state is in good agreement with more recent ab intio calculations [27–29]

at densities relevant to the neutron-star crusts.

As discussed in detail in an accompanying paper [9], neutron band-structure calculations

are needed to determine nc
n. Here, we note that the key ingredient is the single-particle (s.p.)

dispersion relation εαkkk (α being the band index and kkk the Bloch wave vector) given by the

solution of the Schrödinger equation with the periodic mean-field obtained self-consistently

from the ETFSI method. The superfluid density was then found from the equation

nc
n =

m

24π3h̄2

∑

α

∫

F

|∇∇∇kkkεαkkk|dS(α) , (32)

where dS(α) is an infinitesimal area element of the piecewise Fermi surface associated with

the α band. As described in Ref. [9], in most regions of the inner crust only a small fraction

of dripped neutrons contributes to the superfluid density due to Bragg scattering so that

nc
n ≪ nf

n or equivalently Ab ≈ Acell. Note that unbound (bound) neutrons with density nf
n

(respectively nn−nf
n) are characterized by s.p. energies εαkkk lying above (respectively below)

9

Chamel (2005)	

Carter, Chamel & Haensel (2006) 

Bragg scattering off the lattice is important.   
A

Acell

A=N+Z

number of “bound” neutrons.  nb
n 6=

nb
n = nn � nc

n
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Bragg scattering off the lattice is important.   
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Complex interplay of nuclear and band structure effects. 	

The nuclear surface and disorder are likely to play a role.    
Longitudinal lattice phonons and superfluid phonons are strongly 
coupled by entrainment. 

neutron single-particle energy
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Figure 6. Velocities of phonons in the inner crust for two chemical compositions from Fig
2 and three values of the nuclei effective mass A⇥.

Mixing implies that the longitudinal eigenmodes are superpositions of the longitudinal lat-
tice and superfluid phonons. The velocity of these eigenmodes is given by

v1,2 =

�⌥⌥⌥⌃X
2

�

⇤1±

⇧

1�
4v2

l v2
�

X2

⇥

⌅ (19)

where X = g2
mix+v2

l +v2
� and vl and v� are defined in Eq. 14. The velocity of the eigenmodes

for the crustal compositions of catalyzed and accreted matter shown in panels (A) and (B) of
Fig. 2 are plotted in Fig. 6. The dashed curves show results for vl and v� without mixing and
they cross at ⇥ ⇧ 1013 g/cm3. In this resonance region mixing is large and level repulsion
can be significant. Away from resonance, the eigenmodes contain only small admixtures:
below ⇥ ⇧ 1013 g/cm3 the mode labelled v2 is predominantly the superfluid mode and above
it is predominantly the lattice mode. In these calculations we have neglected the second
contribution in Eq. 17 to gmix and the value of nb was chosen somewhat arbitrarily to reflect
the range of m⇥ predicted in [24]. The panels show results for three values of gmix chosen to
reflect different fractions a = 0, 30% and 60% of unbound neutrons in the cell entrained by
each nucleus. Transverse modes are unaffected by mixing at leading order but are affected
by entrainment. Its variation in the crust for different values of a is also shown in Fig. 6.
Despite strong mixing vt ⌅ v1 or v2, and transverse modes will continue to be dominate the
specific heat.

0% Entrained
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Figure 6. Velocities of phonons in the inner crust for two chemical compositions from Fig
2 and three values of the nuclei effective mass A⇥.

Mixing implies that the longitudinal eigenmodes are superpositions of the longitudinal lat-
tice and superfluid phonons. The velocity of these eigenmodes is given by

v1,2 =

�⌥⌥⌥⌃X
2
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4v2

l v2
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⇥

⌅ (19)

where X = g2
mix+v2

l +v2
� and vl and v� are defined in Eq. 14. The velocity of the eigenmodes

for the crustal compositions of catalyzed and accreted matter shown in panels (A) and (B) of
Fig. 2 are plotted in Fig. 6. The dashed curves show results for vl and v� without mixing and
they cross at ⇥ ⇧ 1013 g/cm3. In this resonance region mixing is large and level repulsion
can be significant. Away from resonance, the eigenmodes contain only small admixtures:
below ⇥ ⇧ 1013 g/cm3 the mode labelled v2 is predominantly the superfluid mode and above
it is predominantly the lattice mode. In these calculations we have neglected the second
contribution in Eq. 17 to gmix and the value of nb was chosen somewhat arbitrarily to reflect
the range of m⇥ predicted in [24]. The panels show results for three values of gmix chosen to
reflect different fractions a = 0, 30% and 60% of unbound neutrons in the cell entrained by
each nucleus. Transverse modes are unaffected by mixing at leading order but are affected
by entrainment. Its variation in the crust for different values of a is also shown in Fig. 6.
Despite strong mixing vt ⌅ v1 or v2, and transverse modes will continue to be dominate the
specific heat.

60% Entrained
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of normal neutrons above the drip point, while models A1 and B1 predict a thick layer of
normal neutrons at the highest densities. Modifications to this simple picture of pairing in
uniform neutron matter due to the presence of the nuclei are discussed in this book in the
chapter by N. Sandulescu & J. Margueron [19]. Further, we briefly note that like in the
case of electrons, coherent Bragg scattering of neutrons by the lattice lead to band structure
effects that modify the shape of the Fermi surface, still Eq. 9 is an excellent approximation
to Cv in normal phase for reasons described in [20].

Elsewhere in the crust where T ⇥ Tc the relevant neutron contribution is from superfluid
phonons, i.e., collective instead of single particle excitations, and is given by

Csph
v =

2⇥2

15
T 3

v3
�

(11)

where

v� =

⇤
n f

mn f 2
�

�
with f 2

� =
⇤n f

⇤µn
, see §3.5.

⇥
(12)

is the superfluid phonon velocity, n f , µn and mn are the number density, chemical potential
and mass of the free neutrons, respectively. For weakly coupled systems v� = vF/

⇧
3 where

vF is the Fermi velocity. In most of the inner crust v� ⇤ vt (see Fig. 6) and hence their
contribution to the heat capacity is negligible except perhaps in a sliver where v� ⌅ vt and
T � Tc.
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Figure 5. Specific heat of ions, electrons, and for neutrons with (labelled nSF) and without
the effects of the superfluid gap (labelled nN) are shown for four representative tempera-
tures.

The specific heat due to these components is shown in Fig. 5. The ion contribution for
T � 0.1Tp varies as T 3 and is to very good approximation given by Clph

V , while electron
contribution is linear in T and dominates at low temperature. As mentioned earlier, the
neutron contribution is sensitive to the variation of the 1S0 gap. To illustrate this we show

Crustal Specific Heat 

Page & Reddy (2012) 
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we discuss below the phonon contribution can become important in accreting neutron stars
where T ⌥ 108 �109 K. For T � TD the contribution from lattice phonons (lph) is given by

Clph
v =

2⇤2

15

�
T 3

v3
l
+

2 T 3

v3
t

⇥
, (4)

and vl and vt are velocities of the longitudinal, and transverse lattice phonons, respectively.
In a model where the strong interaction between the neutron superfluid and the ion lattice is
ignored it is simple to calculate these velocities. The speed of longitudinal lattice vibrations
is approximated as vl =

⇤
Kion�e/⌅ where Kion�e = ⌅(⌃(Pion+Pe)/⌃⌅) is the bulk-modulus

of the electron-ion system and the ion mass density ⌅ = Amn nI where A is the number of
bound nucleons in the ion. Since Pe ⌃ Pion, we can write

vl =

⇧
⌃Pe

⌃⌅
=

⇧p

kTFe
, (5)

which is usually referred to as the Bohm-Staver sound speed. The velocity of the transverse
lattice mode is related to µ, the shear modulus of the lattice, and is given by

vt =

⌅
µ
⌅
= ⇥

⇧p

qD
, (6)

where qD = (6⇤2nI)1/3 is the ion Debye momentum, and the constant ⇥ ⌥ 0.4 is obtained
by numerical calculations of Coulomb crystals [17]. Further, since

qD

kTFe
=

⌅
⇤

4e2

�
2
Z

⇥1/3

⌃ 1 (7)

we have vl ⌃ vt and the contribution from longitudinal modes to Cv in Eq. 4 in negligible.
Thus the lattice contribution can be written in the familiar form

Clph
v = ni

12⇤4

5

�
T
TD

⇥3

, (8)

where TD = (3/2)1/3vt qD ⌥ 0.45Tp is the Debye temperature of the ion lattice. This low
temperature form of the specific heat provides an excellent approximation in Coulomb
solids up to T ⇥ Tp/50 but fails when T ⇤ Tp/10 [18].

To calculate the neutron contribution to Cv we first note that there are two distinct
regimes. In the normal phase when T ⇤ Tc the neutron contribution is large and is given by

Cneutron
v =

1
3

mn kFn T (T > Tc) (9)

This normal contribution can become important in the vicinity of neutron drip where T > Tc,
and at the crust-core boundary. In the superfluid phase when T ⇧ Tc the neutron single
particle excitations are strongly suppressed and

Cneutron
v ⌅ 1

3
mn kFn T exp

�
��n

T

⇥
(T ⇧ Tc) . (10)

which is usually negligible. The four models for the gap in Fig. 4 allow us to explore the
effect of pairing on the neutron specific heat. In models A1 and A2 we have a thick shell
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Figure 4. A sample of theoretical prediction for the neutron 1S0 superfluidity critical tem-
perature Tc.

In Fig. 4 model predictions for the critical temperature Tc = �n/1.76 are shown where
curves labelled "BCS" and "GMB" show the analytical results in the weak coupling valid
in the limit |akF |⇥ 1. In the Bardeen Cooper and Schrieffer (BCS) approximation �BCS =
(8/e2)exp(⇤/2a kF)EF , with a scattering length a=�18.5, fm. Corrections due to medium
polarization which appear at the same order reduce the gap to �GMB = 1/(4e)1/3�BCS from
[11]. Curves labelled "A1" and "A2" are examples of slowly growing Tc at low kF , from [12]
and [13], respectively. Curves "B1" and "B2" mimic behavior predicted by strong coupling
QMC calculations from [14] and [15] where the gap increases rapidly with density. In
models labelled "A1" and "B1" where gaps vanish at ⌅ ⇤ 1014 g/cm3. For more details on
the density and model dependence of the gap we refer the reader to the chapter by Gezerlis
and Carlson[16] in this book.

In the region where T < Tc collective excitations of the neutron fluid called superfluid
phonons, with a dispersion relation ⇧ = v⇥ q, are the relevant low energy degrees of free-
dom. This mode corresponds to fluctuations of the phase of the superfluid condensate (and
can be related to density fluctuations) and is the Goldstone mode associated with the spon-
taneous breaking of the global U(1) symmetry in superfluid ground state (the Hamiltonian
is invariant under arbitrary phase rotations of the fermion fields, but in the superfluid ground
state is preserved only by discrete rotations of ⇤/2).

3.4. Specific heat

The electron contribution the specific heat (hereafter Cv will represent the specific heat per
unit volume) is given by

Ce
v =

1
3

µ2
e T , (3)

at low temperature. Band structure affects only negligible as only small regions of the
Fermi surface are affected. At low-temperature when T ⇥ Tp electrons dominate, but as
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of normal neutrons above the drip point, while models A1 and B1 predict a thick layer of
normal neutrons at the highest densities. Modifications to this simple picture of pairing in
uniform neutron matter due to the presence of the nuclei are discussed in this book in the
chapter by N. Sandulescu & J. Margueron [19]. Further, we briefly note that like in the
case of electrons, coherent Bragg scattering of neutrons by the lattice lead to band structure
effects that modify the shape of the Fermi surface, still Eq. 9 is an excellent approximation
to Cv in normal phase for reasons described in [20].

Elsewhere in the crust where T ⇥ Tc the relevant neutron contribution is from superfluid
phonons, i.e., collective instead of single particle excitations, and is given by

Csph
v =

2⇥2

15
T 3

v3
�

(11)

where

v� =

⇤
n f

mn f 2
�

�
with f 2

� =
⇤n f

⇤µn
, see §3.5.

⇥
(12)

is the superfluid phonon velocity, n f , µn and mn are the number density, chemical potential
and mass of the free neutrons, respectively. For weakly coupled systems v� = vF/

⇧
3 where

vF is the Fermi velocity. In most of the inner crust v� ⇤ vt (see Fig. 6) and hence their
contribution to the heat capacity is negligible except perhaps in a sliver where v� ⌅ vt and
T � Tc.
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Figure 5. Specific heat of ions, electrons, and for neutrons with (labelled nSF) and without
the effects of the superfluid gap (labelled nN) are shown for four representative tempera-
tures.

The specific heat due to these components is shown in Fig. 5. The ion contribution for
T � 0.1Tp varies as T 3 and is to very good approximation given by Clph

V , while electron
contribution is linear in T and dominates at low temperature. As mentioned earlier, the
neutron contribution is sensitive to the variation of the 1S0 gap. To illustrate this we show

Electrons:

Ions:
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we discuss below the phonon contribution can become important in accreting neutron stars
where T ⌥ 108 �109 K. For T � TD the contribution from lattice phonons (lph) is given by

Clph
v =

2⇤2

15

�
T 3

v3
l
+

2 T 3

v3
t

⇥
, (4)

and vl and vt are velocities of the longitudinal, and transverse lattice phonons, respectively.
In a model where the strong interaction between the neutron superfluid and the ion lattice is
ignored it is simple to calculate these velocities. The speed of longitudinal lattice vibrations
is approximated as vl =

⇤
Kion�e/⌅ where Kion�e = ⌅(⌃(Pion+Pe)/⌃⌅) is the bulk-modulus

of the electron-ion system and the ion mass density ⌅ = Amn nI where A is the number of
bound nucleons in the ion. Since Pe ⌃ Pion, we can write

vl =

⇧
⌃Pe

⌃⌅
=

⇧p

kTFe
, (5)

which is usually referred to as the Bohm-Staver sound speed. The velocity of the transverse
lattice mode is related to µ, the shear modulus of the lattice, and is given by

vt =

⌅
µ
⌅
= ⇥

⇧p

qD
, (6)

where qD = (6⇤2nI)1/3 is the ion Debye momentum, and the constant ⇥ ⌥ 0.4 is obtained
by numerical calculations of Coulomb crystals [17]. Further, since

qD

kTFe
=

⌅
⇤

4e2

�
2
Z

⇥1/3

⌃ 1 (7)

we have vl ⌃ vt and the contribution from longitudinal modes to Cv in Eq. 4 in negligible.
Thus the lattice contribution can be written in the familiar form

Clph
v = ni

12⇤4

5

�
T
TD

⇥3

, (8)

where TD = (3/2)1/3vt qD ⌥ 0.45Tp is the Debye temperature of the ion lattice. This low
temperature form of the specific heat provides an excellent approximation in Coulomb
solids up to T ⇥ Tp/50 but fails when T ⇤ Tp/10 [18].

To calculate the neutron contribution to Cv we first note that there are two distinct
regimes. In the normal phase when T ⇤ Tc the neutron contribution is large and is given by

Cneutron
v =

1
3

mn kFn T (T > Tc) (9)

This normal contribution can become important in the vicinity of neutron drip where T > Tc,
and at the crust-core boundary. In the superfluid phase when T ⇧ Tc the neutron single
particle excitations are strongly suppressed and

Cneutron
v ⌅ 1

3
mn kFn T exp

�
��n

T

⇥
(T ⇧ Tc) . (10)

which is usually negligible. The four models for the gap in Fig. 4 allow us to explore the
effect of pairing on the neutron specific heat. In models A1 and A2 we have a thick shell

{Neutrons:
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, (8)

where TD = (3/2)1/3vt qD ⌥ 0.45Tp is the Debye temperature of the ion lattice. This low
temperature form of the specific heat provides an excellent approximation in Coulomb
solids up to T ⇥ Tp/50 but fails when T ⇤ Tp/10 [18].

To calculate the neutron contribution to Cv we first note that there are two distinct
regimes. In the normal phase when T ⇤ Tc the neutron contribution is large and is given by

Cneutron
v =

1
3

mn kFn T (T > Tc) (9)

This normal contribution can become important in the vicinity of neutron drip where T > Tc,
and at the crust-core boundary. In the superfluid phase when T ⇧ Tc the neutron single
particle excitations are strongly suppressed and

Cneutron
v ⌅ 1

3
mn kFn T exp

�
��n

T

⇥
(T ⇧ Tc) . (10)

which is usually negligible. The four models for the gap in Fig. 4 allow us to explore the
effect of pairing on the neutron specific heat. In models A1 and A2 we have a thick shell
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where TD = (3/2)1/3vt qD ⌥ 0.45Tp is the Debye temperature of the ion lattice. This low
temperature form of the specific heat provides an excellent approximation in Coulomb
solids up to T ⇥ Tp/50 but fails when T ⇤ Tp/10 [18].
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of normal neutrons above the drip point, while models A1 and B1 predict a thick layer of
normal neutrons at the highest densities. Modifications to this simple picture of pairing in
uniform neutron matter due to the presence of the nuclei are discussed in this book in the
chapter by N. Sandulescu & J. Margueron [19]. Further, we briefly note that like in the
case of electrons, coherent Bragg scattering of neutrons by the lattice lead to band structure
effects that modify the shape of the Fermi surface, still Eq. 9 is an excellent approximation
to Cv in normal phase for reasons described in [20].

Elsewhere in the crust where T ⇥ Tc the relevant neutron contribution is from superfluid
phonons, i.e., collective instead of single particle excitations, and is given by

Csph
v =

2⇥2

15
T 3

v3
�

(11)

where

v� =

⇤
n f

mn f 2
�

�
with f 2

� =
⇤n f

⇤µn
, see §3.5.

⇥
(12)

is the superfluid phonon velocity, n f , µn and mn are the number density, chemical potential
and mass of the free neutrons, respectively. For weakly coupled systems v� = vF/

⇧
3 where

vF is the Fermi velocity. In most of the inner crust v� ⇤ vt (see Fig. 6) and hence their
contribution to the heat capacity is negligible except perhaps in a sliver where v� ⌅ vt and
T � Tc.
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Figure 5. Specific heat of ions, electrons, and for neutrons with (labelled nSF) and without
the effects of the superfluid gap (labelled nN) are shown for four representative tempera-
tures.

The specific heat due to these components is shown in Fig. 5. The ion contribution for
T � 0.1Tp varies as T 3 and is to very good approximation given by Clph

V , while electron
contribution is linear in T and dominates at low temperature. As mentioned earlier, the
neutron contribution is sensitive to the variation of the 1S0 gap. To illustrate this we show

Crustal Specific Heat 

Page & Reddy (2012) 
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• Dissipative processes:  
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�Q

�q

�p

�p + �k

Figure 8. Feynman diagram for the Umklapp process. The double dashed line represents
recoil-free momentum transfer ⌃Q=⌃k�⌃q to the lattice, and |⌃q|< qD lies in the first Brillouin
zone.

Ṽ (k) = FZ(k)/(k2 +k2
TFe) characterizes the screened electron-ion interaction in momentum

space where k2
TFe = 4e2k2

Fe/⇧ and FZ(k) is the charge form factor of the nucleus.
Pauli blocking restricts ⌥ ⇤ T ⇥ µe, and when S(⌥,k) contains most of its strength in

the region ⌥� 3T the conductivity can be expressed in terms of the static structure function
S(k) =

�
d⌥ S(k,⌥). However, S(⌥,k) has strength at⌥⇤⌥p and ⌅e cannot be calculated in

terms of S(k) when T < Tp. Here, the frequency dependence of the dynamic structure factor
is needed but this is generally difficult to calculate in strongly coupled quantum systems.
Fortunately, when T < TD phonons are the only relevant degrees of freedom and electron
scattering is dominated by the emission or absorption of phonons [29]. In this case, S(⌥,k)
is simpler and is characterized by discrete peaks at ⌥= vk associated with the excitation of
phonons with velocity v.

In the low-energy theory, the interaction between electron and phonons is described by
the Lagrangian density

Le�ph =
1

feph
 †

e e⌦i�i where feph =

⇧⌃ k2
D

4⇧Ze2 nI
(23)

is related to electron-phonon coupling constant [30],  e is the electron field and �i is the
ion displacement (phonon) field discussed in §3.. This form of the interaction applies to
normal processes, where the momentum transfer k < qD and displacements correspond to
excitation of longitudinal phonons. However, since kFe/qD = (Z/2)1/3 > 1 large angle
electron scattering with k > qD is possible. This Umklapp process is depicted in Fig. 8
where the electron simultaneously Bragg scatter off the lattice and excite a phonon. Elastic
Bragg scattering (without phonon emission) however does not contrbute because electrons
are eigenstates of the lattice potential. Further, unlike normal processes where only longi-
tudinal modes are involved, Umklapp scattering is dominated by the emission or absorption
of transverse phonons [28, 31].

The dynamic structure factor for single-phonon emission and absorption including
Umklapp shown in Fig. 8 is given by

S(⌥,k) = nI

MI
↵

i
↵
Q

(⌃k.⇤̂i)2

2 ⌥

�
⇥(⌥� vi q)

1� exp(��⌥) +
⇥(⌥+ vi q)

exp(��⌥)�1

⇥
⇥3(⌃k� ⌃Q�⌃q) , (24)

where the first and second terms in parenthesis represent phonon emission and absorption,
respectively [28] . The phonon momentum is restricted to the first Brillouin zone q < qD,

kFe
qD

=

✓
Z

2

◆1/3

> 1

Flowers & Itoh (1976)

Cirigliano, Reddy & Sharma (2011) 

Electron Bragg scatters and emits a transverse phonon.  

� =
1

3
Cv ⇥ v ⇥ ⇥



Superfluid Conduction

Its impossible to sustain a 
temperature gradient in 
bulk superfluid helium ! 

Superfluid heat flow in the crust

Sanjay Reddy

December 23, 2011

1 Counter Flow

In ordinary superfluids such as helium II it is well know that a temperature gradient drives
rapid and ordered flow [1]. In the two-fluid model this is interpreted as the counterflow of
normal and superfluid components to ensure a net energy flow without associated mass flow
[2]. When a temperature gradient is imposed on a superfluid, initially superfluid flows to
the high temperature region in response to the chemical potential gradient and neutralizes
it on a short timescale that is associated with the superfluid flow critical velocity. The
subsequent steady state is one in which the temperature and pressure gradients are related
(to ensure that the chemical potential gradient is zero) and these gradients drive normal
fluid flow toward the low temperature region.

In what follows, we investigate the possibility of heat flow due to the ordered motion of
the normal component of the neutron superfluid across the neutron star inner crust due to
an imposed temperature gradient. Such gradients are likely to be realized in accreting and
magnetized neutron stars due to heat released from nuclear reactions and magnetic field
reconfiguration, respectively [3, 4]. In current models the di�usion of electrons is expected
to be the dominant contribution to the heat flux. In the presence of superfluid counterflow
an additional contribution to the energy flux arises due to uniform motion of the normal
component with velocity vn and the total heat flux is given by

↵Q = S(sPh)T↵vn � � ⇧T , (1)

where

S(sPh) =
1

3
C(sPh)
v =

2⇥2

15 c3s
T 3 (2)

is the entropy density of the superfluid (contained in the superfluid phonons (sPh) field),

cs ⇥ vF /
⌅
3 is the velocity of the superfluid phonon, and C(sPh)

v is the phonon specific
heat. � is the total thermal conductivity, characterizing all particles that contribute to
the di�usive heat flux. We note that both terms contribute with the same sign and aid in
transporting energy along the same direction (↵vn ⇤ � ↵⇧T ).

1

T>Tc T<Tc

Photographs: JF Allen and JMG Armitage (St Andrews University 1982).

Superfluid heat flow in the crust

Sanjay Reddy

December 23, 2011

1 Counter Flow

In ordinary superfluids such as helium II it is well know that a temperature gradient drives
rapid and ordered flow [1]. In the two-fluid model this is interpreted as the counterflow of
normal and superfluid components to ensure a net energy flow without associated mass flow
[2]. When a temperature gradient is imposed on a superfluid, initially superfluid flows to
the high temperature region in response to the chemical potential gradient and neutralizes
it on a short timescale that is associated with the superfluid flow critical velocity. The
subsequent steady state is one in which the temperature and pressure gradients are related
(to ensure that the chemical potential gradient is zero) and these gradients drive normal
fluid flow toward the low temperature region.

In what follows, we investigate the possibility of heat flow due to the ordered motion of
the normal component of the neutron superfluid across the neutron star inner crust due to
an imposed temperature gradient. Such gradients are likely to be realized in accreting and
magnetized neutron stars due to heat released from nuclear reactions and magnetic field
reconfiguration, respectively [3, 4]. In current models the di�usion of electrons is expected
to be the dominant contribution to the heat flux. In the presence of superfluid counterflow
an additional contribution to the energy flux arises due to uniform motion of the normal
component with velocity vn and the total heat flux is given by

↵Q = S(sPh)T↵vn � � ⇧T , (1)

where

S(sPh) =
1

3
C(sPh)
v =

2⇥2

15 c3s
T 3 (2)

is the entropy density of the superfluid (contained in the superfluid phonons (sPh) field),

cs ⇥ vF /
⌅
3 is the velocity of the superfluid phonon, and C(sPh)

v is the phonon specific
heat. � is the total thermal conductivity, characterizing all particles that contribute to
the di�usive heat flux. We note that both terms contribute with the same sign and aid in
transporting energy along the same direction (↵vn ⇤ � ↵⇧T ).

1Why does this not occur in neutron stars ?	

Answer:  Fluid motion is damped by electrons.  

Two fluid model: Counter-flow transports heat. 	

(Its the superfluid phonon fluid)	

!
The velocity is limited only by fluid dynamics: (i) boundary shear 
viscosity or (ii) superfluid turbulence. 

Aguilera, Cirigliano, Reddy & Sharma (2009)



i
i

“PageReddy” — 2012/1/26 — 10:24 — page 17 — #17 i
i

i
i

i
i

17

5

Q      =

T = 1x10   K
8

T = 3x10   K7T = 1x10   K7 T = 3x10   K8

0

1

2

4
3

imp

κ

14

ρLog    (g/cm  )3

20

21

18

19

12 13 14

ρLog    (g/cm  )3

11 12 1311
3Log    (g/cm  )ρ

14131211
3Log    (g/cm  )ρ

141311 12

L
o
g
  
  
(c

g
s)

Figure 9. Electron thermal conductivity �e vs density at four different temperatures. Scat-
tering processes e-ion, e-e, and e-imp with 6 values of Qimp = 0, 1, 2, 3, 4, and 5 (as
indicated in the left panel) are included.

of impurity scattering in the inner crust for T < 108 K and for Qimp � 1. Both of these trends
are easily understood in terms of the preceding discussion of various scattering mechanisms
and their temperature dependencies. As we discuss in §5., Qimp will play an important role
in interpreting observations in accreting neutron stars when the inner crust is cold with
T < Tum.

4.5. Phonon conduction

Phonon heat conduction can become relevant when T >⇥ 108 K when the phonon heat capac-
ity becomes comparable to that of electrons, or when the electron contribution is suppressed
either due to large Qimp or magnetic fields. Its importnace depends on the phonon mean free
path being large enough to compensate for their smaller velocity. Phonon scattering pro-
cesses have been discussed in Refs. [26, 27] and we will briefly review them here. As in
terrestrial metals [29], electrons in the inner crust are efficient at damping lattice phonons.
The phonon-electron process is shown in Fig 7 (2a) which depicts a phonon decay produc-
ing an electron-hole excitation. This, Landau damping, dominates over phonon-impurity
and phonon-phonon processes for the temperature realized in the crust [26].

The electron-phonon process discussed in §4.1. and the phonon-electron process we
discuss here are essentially similar. Only here it acts to bring into equilibrium the phonon
distribution function that carries the net thermal current relative to the electron gas. Since
transverse modes dominate the heat capacity their contribution to thermal conduction is rel-
evant and longitudinal modes can be neglected. For T � Tum, Umklapp processes dominate
and transverse phonons are absorbed and emitted by large angle electron scattering on the
Fermi surface. The mean free path for these processes was estimated by Chugunov and
Haensel in [26]. For simplicity, neglecting corrections due to the Debye-Waller factor, we
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Impurity scattering is important at low temperature. 
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Figure 7. Feynman diagrams indicating the various scattering and dissipative processes
involving electrons, lattice phonons and superfluid phonons.

4. Transport Properties

The electron and phonon thermal conductivity can be written as ⇥ = Cv v ⇤/3 where Cv is
their specific heat, v is their velocity, and ⇤ is the transport mean free path. Using Eqs. 3 &
4 the electron and phonon conductivities are

⇥e =
1
9

µ2
e T ⇤e , ⇥phi =

2⌅2

45 v2
i

T 3 ⇤phi (20)

where electrons are relativistic (v = 1) with mean-free path ⇤e, and the phonon contribution
is for each phonon type with velocity vi and mean free path ⇤phi . Since µe ⇥ T , electrons
dominate at low temperature but phonon contributions can become relevant at high tem-
perature when ⇤phi � (µe/T )2 v2

i ⇤e or when the magnetic field is large enough to restrict
electron motion [26, 27]. Phonon velocity was discussed in §3., we now turn to discuss
scattering and absorption processes that determine their mean free path. Feynman diagrams
for relevant interactions are illustrated in Fig. 7 and in the following we briefly discuss the
most important of these processes in the inner crust.

4.1. Electron-phonon processes

In its general form, the electron mean free path relevant for the thermal conductivity due to
electron-ion scattering is given by

⇤�1
e =

Z2e4

4⌅µ2
e

� 2kFe

0
dk k3 |Ṽ (k)|2

� ⌃

�⌃
d⇧ F (�⇧)S(⇧,k) g⇥(k,�⇧) (21)

where

g⇥(�⇧,k) = 1+
�

�⇧
⌅

⇥2�
3

k2
Fe
k2 � 1

2

⇥
, F (�⇧) = �⇧

exp(�⇧)�1
(22)

and the dynamical structure factor S(⇧,k) embodies all relevant dynamics of the strongly
coupled system of ions [28]. Here, ⇧,k are the energy and momentum transfer. The function
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and sums are over all reciprocal lattice vectors or lattice momenta ⌃Q, and the longitudinal
and transverse phonon states with polarization vector ⇤̂i and velocity vi. Using Eq. 24 and
the delta functions to perform the integration over k and ⌥, the electron mean free paths in
Eq. 21 can be written as

1
⇧ph

e
=

2⌃2e2 ⌥2
p

µe T  
i

K (i)(T,vi) , where , (25)

K (i)(T,vi) =
P<2kFe

 
Q

� qD

0

d3q
(2⌃)3 Ṽ (P )

P (⌃P .⇤̂i)2(1�P 2/4k2
Fe) g⌅(�viq,P )

(exp(�viq)�1)(1� exp�(�viq))
, (26)

and ⌃P =⌃q+ ⌃Q. To unravel the dependence on the temperature and the phonon velocity we
examine two limitings forms of the function K (i)(T,vi). First, when 2kFe ⇧ qD, the domi-
nant contribution comes from the Umklapp and we can set ⌃P = ⌃Q in evaluating K (i)(T,vi).
In this case, from the RHS of Eq. 26 it is easy to deduce that

lim
Q⇧q

K (i)(T,vi) �
T 3

v3
i
. (27)

In the opposite limit, when only the normal process involving longitudinal lattice modes
contribute we can set ⌃Q = 0 in the RHS of Eq. 26 to find that

lim
Q=0

K (i)(T,vl) �
T 4

v4
l
. (28)

At very low temperature, the band gap in the electron spectrum suppress Umklapp
processes. As mentioned in §3., coherent Bragg scattering by the lattice will distort the
electron Fermi surface for momenta that can coincide with the reciprocal lattice vectors
Q. Here, the spectrum will differ due to a band gap ⇥U ⌃ (4e3/3⌃) kFe. Although distorted
patches on the Fermi surface occupy only a small fraction of the total area, these regions are
important for Umklapp transitions. To understand this suppression consider the case when
the phonon momentum q ⇤ 0. In this limit, large angle electron Umklapp scattering with
⌃k ⌃ ⌃Q can only involve electrons on these patches. However, at low temperature the gap
will suppress such transitions unless the phonon momentum q ⇥ ⇥k where ⇥k ⌃ ⇥U/vFe can
"steer" electrons away from these patches. For transverse thermal phonons q ⌃ 3T/vt and
the condition on the phonon momentum implies that Umklapp occurs for T ⇥ Tum where
Tum = (4e3/9⌃) vt kFe.

From the preceding discussions we can conclude that for T > Tum the mean free path
⇧ph

e � v3
t /T 2 since vt ⌅ vl . For T ⌅ Tum where only normal processes involving longitudinal

phonons are allowed we expect ⇧ph
e � v4

l /T 3. However, the normal electron-phonon process
is too weak to compete with two other sources of electron scattering that we now discuss.

4.2. Electron-impurity scattering

As we noted in §2., in accreting neutron stars nuclear reactions that process accreted mate-
rial can produce a mix of metastable nuclei. The evolution of nuclei in the outer crust has
been studied in [5] where it was found that electron capture induced neutron emission reac-
tions populate a very diverse mix of nuclei with a large dispersion in Z and A. Although it
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As we noted in §2., in accreting neutron stars nuclear reactions that process accreted mate-
rial can produce a mix of metastable nuclei. The evolution of nuclei in the outer crust has
been studied in [5] where it was found that electron capture induced neutron emission reac-
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is reasonable to expect that this dispersion will significantly decrease in the inner crust due
to pycno-nuclear reactions and the abundant supply of neutrons, reaction pathways in the
inner crust remain poorly understood. It is generally assumed that at each depth a specific
nucleus with large Z and the highest abundance will crystallize and the remaining mix of
nuclei can be treated as impurities in the solid. The impurity parameter

Qimp =
1

nion
⌃

i
ni (Zi �⌃Z⌥)2 , (29)

is a good measure of the dispersion in the nuclear charge. For moderate Qimp ⇤ 1 an ordered
lattice is likely with scattered impurities. If the impurities cannot diffuse easily their spatial
distribution will be uncorrelated, and electron scattering off them can become significant.
The scattering mean free path in this case is given by

⇤imp
e =

k2
Fe

4⌅e4 ⌃i ni (Zi �⌃Z̄⌥)2 ��1 =
3⌅⌃Z⌥

4e4Qimp kFe
��1 , (30)

where � ⇧ 1/2 (ln(⌅/e2)�2) is the Coulomb logarithm, and we have used charge neutral-
ity which requires ⌃Z⌥ nion = ne = k3

Fe/3⌅2 in arriving at the second equality.

4.3. Electron-electron scattering

Typically electron-electron scattering is weak but it can become important when electron-
ion scattering is suppressed at T < Tum. Scattering between relativistic electrons is dom-
inated by the current-current interaction which unlike the Coulomb interaction between
charges, this interaction is unscreened in the static limit. The corresponding mean free path
was calculated including the effects of dynamical screening (or Landau damping) in [32].
For the case of relativistic and degenerate electrons

⇤e�e =
⌅2

6⇧[3] e2 T
⇤ 188

T
, (31)

and it is remarkable that it is independent of density. The corresponding conductivity ⇥e�e ⇧
21 µ2

e is also interesting as it is independent of temperature. Consequently, electron-electron
process can become important at T < Tum when electron-phonon Umklapp scattering is
suppressed. However, in practice for T ⇥ 107 K they are only relevant in a small region
close to the crust-core boundary if Qimp ⌅ 1.

4.4. Electron conduction

Numerical calculations of the electron conductivity with several refinements that include
the role of multi-phonon excitations, Debye-Waller corrections and the nuclear form fac-
tors have been calculated and tabulated by the neutron star research group at the Ioffe in-
stitute in St. Petersburg (http://www.ioffe.rssi.ru/astro/conduct/). Since our focus here is
to emphasize the qualitative aspects at low temperature we do not review these important
refinements. The results obtained (using the fits to the tabulated results) are shown in Fig. 9
and qualitative features can be generally understood in terms of our preceding discussion.
Four panels with increasing T in Fig.9 clearly demonstrates: (i) the rapid decrease in ther-
mal conductivity for the case Qimp = 0 as T becomes larger than Tum and (ii) the importance
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tors have been calculated and tabulated by the neutron star research group at the Ioffe in-
stitute in St. Petersburg (http://www.ioffe.rssi.ru/astro/conduct/). Since our focus here is
to emphasize the qualitative aspects at low temperature we do not review these important
refinements. The results obtained (using the fits to the tabulated results) are shown in Fig. 9
and qualitative features can be generally understood in terms of our preceding discussion.
Four panels with increasing T in Fig.9 clearly demonstrates: (i) the rapid decrease in ther-
mal conductivity for the case Qimp = 0 as T becomes larger than Tum and (ii) the importance

Flowers & Itoh (1976)
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Figure 9. Electron thermal conductivity �e vs density at four different temperatures. Scat-
tering processes e-ion, e-e, and e-imp with 6 values of Qimp = 0, 1, 2, 3, 4, and 5 (as
indicated in the left panel) are included.

of impurity scattering in the inner crust for T < 108 K and for Qimp � 1. Both of these trends
are easily understood in terms of the preceding discussion of various scattering mechanisms
and their temperature dependencies. As we discuss in §5., Qimp will play an important role
in interpreting observations in accreting neutron stars when the inner crust is cold with
T < Tum.

4.5. Phonon conduction

Phonon heat conduction can become relevant when T >⇥ 108 K when the phonon heat capac-
ity becomes comparable to that of electrons, or when the electron contribution is suppressed
either due to large Qimp or magnetic fields. Its importnace depends on the phonon mean free
path being large enough to compensate for their smaller velocity. Phonon scattering pro-
cesses have been discussed in Refs. [26, 27] and we will briefly review them here. As in
terrestrial metals [29], electrons in the inner crust are efficient at damping lattice phonons.
The phonon-electron process is shown in Fig 7 (2a) which depicts a phonon decay produc-
ing an electron-hole excitation. This, Landau damping, dominates over phonon-impurity
and phonon-phonon processes for the temperature realized in the crust [26].

The electron-phonon process discussed in §4.1. and the phonon-electron process we
discuss here are essentially similar. Only here it acts to bring into equilibrium the phonon
distribution function that carries the net thermal current relative to the electron gas. Since
transverse modes dominate the heat capacity their contribution to thermal conduction is rel-
evant and longitudinal modes can be neglected. For T � Tum, Umklapp processes dominate
and transverse phonons are absorbed and emitted by large angle electron scattering on the
Fermi surface. The mean free path for these processes was estimated by Chugunov and
Haensel in [26]. For simplicity, neglecting corrections due to the Debye-Waller factor, we

Electron Conduction

Impurity scattering is important at low temperature. 
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Figure 7. Feynman diagrams indicating the various scattering and dissipative processes
involving electrons, lattice phonons and superfluid phonons.

4. Transport Properties

The electron and phonon thermal conductivity can be written as ⇥ = Cv v ⇤/3 where Cv is
their specific heat, v is their velocity, and ⇤ is the transport mean free path. Using Eqs. 3 &
4 the electron and phonon conductivities are

⇥e =
1
9

µ2
e T ⇤e , ⇥phi =

2⌅2

45 v2
i

T 3 ⇤phi (20)

where electrons are relativistic (v = 1) with mean-free path ⇤e, and the phonon contribution
is for each phonon type with velocity vi and mean free path ⇤phi . Since µe ⇥ T , electrons
dominate at low temperature but phonon contributions can become relevant at high tem-
perature when ⇤phi � (µe/T )2 v2

i ⇤e or when the magnetic field is large enough to restrict
electron motion [26, 27]. Phonon velocity was discussed in §3., we now turn to discuss
scattering and absorption processes that determine their mean free path. Feynman diagrams
for relevant interactions are illustrated in Fig. 7 and in the following we briefly discuss the
most important of these processes in the inner crust.

4.1. Electron-phonon processes

In its general form, the electron mean free path relevant for the thermal conductivity due to
electron-ion scattering is given by

⇤�1
e =

Z2e4

4⌅µ2
e

� 2kFe

0
dk k3 |Ṽ (k)|2

� ⌃

�⌃
d⇧ F (�⇧)S(⇧,k) g⇥(k,�⇧) (21)

where

g⇥(�⇧,k) = 1+
�

�⇧
⌅

⇥2�
3

k2
Fe
k2 � 1

2

⇥
, F (�⇧) = �⇧

exp(�⇧)�1
(22)

and the dynamical structure factor S(⇧,k) embodies all relevant dynamics of the strongly
coupled system of ions [28]. Here, ⇧,k are the energy and momentum transfer. The function

Flowers & Itoh (1976)



Low energy excitations in the core

Neutrons are superfluid (T<Tnc):  Electrons + 4 Goldstone modes (3 
neutron modes and 1 electron-proton mode).  Neutron condensate breaks 
baryon number and rotational symmetry.  2 angulons + 1 superfluid phonon.  
(Bedaque, Rupak, Savage, (2003), Bedaque and Reddy (2013), Bedaque, Nicholson (2013))	


Neutrons are normal (T>Tnc): Electrons, neutrons + 1 Goldstone boson 
(electron-proton mode).    

2

scalar. Di↵erent symmetric traceless tensors break the ro-
tation group in di↵erent ways so there are several possible
3
P2 phases. Around the critical temperature one can rely on
BCS and strong coupling estimates of the parameters of the
Ginsburg-Landau free energy to conclude that the ground
state is of the form �0

ij

⇠ diag(1, 1,�2) (or, of course, any
rotation of this matrix)[3, 4]. The structure of the gap equa-
tions are such that, at least within the BCS framework, the
relative order of the di↵erent states is not changes as temper-
ature, density or microscopic interactions change [5] so it is
reasonable to assume that the ground state of neutron mat-
ter is in a phase characterized by the �0

ij

⇠ diag(1, 1,�2)
form of the condensate. This will be an assumption underly-
ing our analysis although many of our qualitative conclusions
are independent of it.

The presence of the condensate�0
ij

⇠ diag(1, 1,�2) breaks
spontaneously the symmetry of the system under rotations,
except for those around the z-axis. Thus, as first realized in
[1] we expect the presence of two gapless excitations above
the ground state, named “angulons”, corresponding to rota-
tions of the condensate around the x and y axis. Angulons
were then studied in more detail in [6] where, with mild as-
sumptions, their properties were quantitatively estimated.
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⇡ �1.91 is the neutron magnetic moment in units of the
nuclear Bohr magneton, B is the magnetic field, k
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the neu-
tron Fermi momentum, M the nucleon mass, v
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/M is
the neutron fermi velocity, and e =

p
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em

/4⇡2 the electron
charge. The values in eq. (3) receive Fermi liquid corrections
not yet computed. The fields �1,2 are linear combinations of
the fields describing rotations of the condensate around the
x and y axis which mix among themselves; in terms of the
original fields the lagrangian is analytic at small momenta.

We now discuss the two remaining massless modes, these
now being associated with density fluctuations. The first
mode is one that would exist in a pure 3P2 ( and also a 1S0)
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TABLE I. Ambient conditions, low energy constants and eigen-
mode velocities v1 and v2 in units of the velocity of light for the
equation of state from [11]

neutron superfluid and it corresponds to the fluctuations of
� - the overall isotropic phase of the condensate. The other
mode is related to density fluctuations of proton condensate
+ the electron gas and is denoted by the scalar field ⇠. The
general low energy e↵ective field theory of these scalar modes
is well studied [7–9] and the low energy Largrangian density
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where we have also included the coupling to the electron
field  
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. The coe�cients of the leading order terms in the
derivative expansion are related to simple thermodynamic
derivates and can be obtained from the equation of state.
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coupling between phonons in the ep system and electron-
hole states is calculated as in the jellium model and is given
by fep =
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2 [10]. Enp arises solely due to nucleon-

nucleon interactions and its value depends on the density, the
equilibrium proton fraction and the equation of state model
chosen. The low energy constants calculated using a rep-
resentative microscopic equation of state from [11] and the
eigenmode velocities in units of the speed of light are shown
in Table I.

The propagation of angulons and superfluid phonons can
be damped by several processes. In the the following we es-
timate the mean free paths of phonons and angulons at low
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T ⌧ � to find that dominant decay mecha-
nism is due to the excitation of electron-hole states. First,
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3

fluid phonons. In the absence of any mixing between these
modes the e � p mode couples strongly to the electron-hole
excitations and its damping rate and the mean free paths are
given by
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respectively. The thermal average mean free path is well
defined and is given by h�ep(T )i = ⇡/(18⇣[3] v

p

T ) ⇡
10�9 (0.3/v

p

) T

�1
8 cm, where T8 is the temperature mea-

sured in units of 108 K.
vnp mixes the the proton-electron mode with the neutron

superfluid phonon mode. We find that both eigenmodes de-
cay predominantly by coupling to electron-hole excitations
(Landau damping). This mixing is similar to the mixing
between the longitudinal phonons of the nuclear lattice and
the neutron superfluid phonons in the inner crust of the neu-
tron star [9]. The velocity and damping rates of the two
longitudinal eigenmodes can be obtained as solutions to the
equation
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In the limit of weak mixing the scattering rate of the pre-
dominantly ep-mode is ⇡ �ep(! = v

p

q) given in eq. (7), and
the scattering rate of the predominantly neutron superfluid
mode is
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and when v
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and v

p

⌧ 1, �
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4
np�ep(!).

Since typical values of v

4
np are in the range 10�4 � 10�1,

we can conclude that the mean free path of the predom-
inantly neutron superfluid mode will be in the range �

�

⇡
10�5(0.3/v) T�1

8 cm to �

�

⇡ 10�8(0.3/v) T�1
8 cm. Although

they are typically much larger than those corresponding to
ep mode, as we shall see later, these are still too small to
contribute significantly to any transport phenomena.

We now turn to the calculation of the angulon mean free
path.The angulon-angulon scattering amplitude is / p

2
/f

2
�

since the powers of p are fixed by dimensional analysis. Its
contribution to the mean free path can then be easily esti-
mated and we find �ang�ang ⇡ v

3
�

f

4
�

/T

5. For T . 109 K,
�ang�ang � R where R ' 10 km is the radius of the neutron
star, and implies that angulon-angulon processes are irrele-
vant.

Angulons mix with the magnetic photons due to two pro-
cesses. One mixing mechanism is due to the magnetic mo-
ment of the neutron and is described by the lagrangian in
eq. (2) the other is mediated by protons which, as charged

n p

FIG. 1. The top line shows the magnetic moment and proton me-
diated mixing processes, respectively. Angulon, photon, electron,
neutron and proton propagators are shown as a dotted, wavy and
solid black, solid red and solid blue lines lines, respectively and
nucleon loops include both normal and anomalous diagrams. The
lower graphs contribute to the imaginary part of the self-energy of
the angulon-magnetic photon mixed mode (left) and the electron-
proton-neutron phonon mode (right).

particles, couple to photons. These two processes are de-
picted in Fig. 1. The latter indirect coupling necessarily in-
volves a spin flip of both neutrons (on account of form the
angulon-neutron coupling) and protons. Thus, only the mag-

netic photon mixes with the angulon and this mixing is sup-
pressed by a power of the proton velocity change ⇠ p/M , the
same suppression appearing in the magnetic moment process.
We find that the proton mediated mixing is smaller than the
mixing generated by the neutron magnetic moment. For the
estimates we present here, we will neglect the proton medi-
ated mixing.

Since magnetic photons are damped by electron-hole exci-
tations, mixing ensures that angulons are also damped. The
angulon scattering rate o↵ electrons is given by
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From the angulon width estimated above we can determine
the angulon mean free path
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where � = v
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/v

F

and v

�

is the mean velocity of the angulon.

Mixing and Damping of Goldstone Bosons 
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Modes decay rapidly due to the coupling to the large density of 
electron-hole states. Do not contribute to transport. 
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Electron Scattering in the Core 

e e

Superconducting protons: !
Both electric and magnetic photon exchange is 
screened. Debye and Meissner screening are strong. 
Large suppression in scattering rates.    !
Normal protons:!
Magnetic interaction (current-current)  is dynamically 
screened due to Landau damping. This screening is 
weak.  Scattering weakly suppressed. 
Pethick and Heiselberg (1993), Shternin and Yakovlev (2006,2007)

3

is the differential transition probability for a scattering
process p1p2 → p′

1p
′
2; |M12|2 is the squared matrix ele-

ment summed over particle spin states (it includes also
the symmetry factor to avoid double counting of the same
collisions events); primes refer to particles after the colli-
sion. In Eqs. (7)–(9) we use the system of units in which
c = kB = ! = 1. The same system will be used below
unless the contrary is indicated.

In the absence of muons we have

κeµ = κe, τ−1
e = νe = νee + νep. (10)

A. Dynamical screening of electromagnetic
interaction

The physics of the dynamical plasma screening is thor-
oughly analyzed by Heiselberg and Pethick [18]. These
authors consider quark-quark collisions in a quark plasma
through one-gluon exchange in the weak-coupling limit.
Such collisions are similar to electromagnetic scattering
of charged particles in an ordinary plasma. Electromag-
netic interactions of muons and electrons in neutron star
cores are usually accompanied by small momentum and
energy transfers which greatly simplifies the theory. The
squared matrix element for small energy transfers in a
collision p1p2 → p′

1p
′
2 of nonidentical particles 1 and 2

is

|M12|2 ∝

∣∣∣∣∣
J (0)

1′1J (0)
2′2

q2 + Πl
−

Jt1′1 · Jt2′2

q2 − ω2 + Πt

∣∣∣∣∣

2

, (11)

where !q = p′
1 − p1 is a momentum transfer, !ω =

ε′1− ε1 is an energy transfer (in standard physical units),

J (ν)
i = (J (0)

i′i , Ji′i) = (ū′
iγ

νui) is the transition 4-current
(ν=0,. . . ,3), γν is a Dirac matrix, ui is a normalized
bispinor (ūiui = 2mi), ūi is a Dirac conjugate (see, e.g.,
Berestetskĭı, Lifshitz and Pitaevskii [21]); Jti′i is the com-
ponent of Ji′i transverse to q. The longitudinal com-
ponent of Ji′i (parallel to q) is related to the time-like

(charge density) component J (0)
i′i via charge conservation.

It is excluded from Eq. (11) with the aid of the continuity
equation as explained by Heiselberg and Pethick [18]. For
collisions of identical particles (ee and µµ in our case), the

matrix element contains two parts, M12 = M (1)
12 + M (2)

12 ,
which correspond to two channels, (1 → 1′; 2 → 2′) and
(1 → 2′; 1′ → 2). However, in the small-momentum-
transfer approximation, the interference term is small,
both channels give equal contributions, and the relation-
ship (11) is not violated.

Equation (11) contains the polarization functions Πl

and Πt which depend on ω and q and describe plasma
screening of interparticle interaction by longitudinal
and transverse plasma perturbations (plasmons), respec-
tively. In the random phase approximation (RPA), these
functions are the sums of terms for all charged particles
i (electrons, muons and protons). In the classical limit

(q ≪ pFi, ω ≪ vFipFi) one has (e.g., Alexandrov, Bog-
dankevich and Rukhadze [22])

Πl =
∑

i

4αp2
Fi
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χl(xi),

Πt =
∑

i

4αp2
FivFi

π
χt(xi), (12)

where xi = ω/(qvFi), α = e2/!c ≈ 1/137 is the fine
structure constant, and

χl(x) = 1 −
x

2
ln

(
x + 1

x − 1

)
,

χt(x) =
x2

2
+

x(1 − x2)

4
ln

(
x + 1

x − 1

)
. (13)

For typical conditions of very strong degeneracy in neu-
tron star cores, it is sufficient to use the expressions for
Πl and Πt in the limit of q ≪ pFi and xi ≪ 1, in which
χl(x) ≈ 1 and χt(x) ≈ iπx/4. In this limit,

Πl =
∑

i

3ω2
i

v2
Fi

= q2
l , (14)
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π

4

ω

q

∑

i

3ω2
i

vFi
= i

π

4

ω

q
q2
t , (15)

where ωi = (4πe2ni/m∗
i )

1/2 is the plasma frequency
of particles i, and m∗

i is the effective particle mass at
the appropriate Fermi surface. We have already defined
m∗

e and m∗
µ for electrons and muons which form almost

ideal Fermi gases. Their effective masses differ from the
bare masses owing to relativistic effects. As for protons
(i = p), which are nonrelativistic in neutron star cores,
their effective mass m∗

p differs from the bare proton mass
due to strong interactions with surrounding nucleons. In
the approximation (14) and (15) one can also neglect ω2

in the denominator of the second term in (11). Equations
(13) are strictly valid for Fermi gases, which is a good ap-
proximation for the electrons and muons, but the protons
constitute a Fermi liquid. Fortunately, the asymptotic
expressions (14) and (15), sufficient for our calculations,
remain valid for the Fermi liquid. This is because a ki-
netic equation for quasiparticles in the Fermi liquid at
low ω is similar to a familiar kinetic equation for Fermi
gases (see, e.g., Ref. [23]).

In Eqs. (14) and (15) we have introduced ql and qt

[cm−1] defined as (in standard physical units)

q2
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π

∑

i

cm∗
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, (16)

q2
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!2
. (17)

Generally, we have qt ≤ ql. If all charged particles were
ultrarelativistic then qt → ql.
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nuclear saturation density. The typical electron/proton fraction is on the order of a few percent at n = n

0

, and increases with
density. When the electron Fermi energy exceeds the mass of the muon, matter also contains an admixture of muons. This
matter containing neutrons, protons, electrons, and muons in a liquid state may persist up to the highest densities ⇡ 1015 g
cm�3 at the center of the star in the absence of phase transitions to other exotic forms of matter containing hyperons, kaons,
or quarks (for a recent review see [2]). At the high densities in the core the neutron Fermi momentum is large, and s-wave
interactions between neutrons become repulsive. Superfluid pairing is only possible in p-waves, and p-wave pairing has been
found to be fragile and model dependent, with estimates of the critical temperature T

n

c

⇡ 108 K [11]. In contrast, because
the proton density is small, s-wave interactions remain strongly attractive for protons and s-wave proton superconductivity
with a critical temperature T

p

c

⇡ 108 � 1010 K is expected.
Throughout these di↵erent phases of matter inside the neutron star, electrons remain relativistic, degenerate, and weakly

interacting. They consequently play an important role in transport phenomena that shape the thermal, magnetic field, and
spin evolution of neutron stars. In this article we calculate the electron-neutron coupling, which depends on the polarizability
of the medium, and show that it is relevant. In earlier work electron-neutron scattering due to the intrinsic magnetic moment
of the neutron was considered and found to be unimportant [5]. Here, in contrast, we find that electron-neutron scattering
due to the induced coupling is important for determining the electronic transport properties in the neutron star core.

We begin with a derivation of the induced interaction in the core and in the inner crust in sections II and III, respectively.
In section IV we derive general formulae for the the electron thermal conductivity, electrical conductivity, and shear viscosity.
We present our results for these electronic transport properties, and compare them to those obtained in earlier work in section
V to highlight situations in which electron-neutron scattering could be important. Our conclusions and some limitations of
our study are presented in section VI. Appendix A contains an illustrative derivation of the e↵ective coupling, and in appendix
B we collect relevant formulae from previous studies which were used to make comparisons. Throughout we use natural units,
setting ~ = 1, c = 1, and k

B

= 1, and the electric charge e =
p
4⇡↵ where ↵ = 1/137 is the fine structure constant. Since the

electron Fermi momentum k

Fe

' 100 MeV � m

e

for typical densities encountered in the neutron star inner crust and core,
throughout we treat the electrons as ultra-relativistic particles with velocity v

e

= c = 1.

II. INDUCED ELECTRON-NEUTRON INTERACTION IN THE CORE

In free space, and at low momenta, the electron-neutron interaction is weak as it arises due to the small neutron magnetic
moment. In contrast, in the dense plasma inside neutron stars, electrons can couple to neutrons due to an interaction induced
by the polarizability of the charged protons. This can be understood intuitively by noting that the presence of the neutron
in the medium will disturb its immediate vicinity, and a↵ect in particular the proton density distribution. This will create
either a positively or negatively charged cloud around the neutrons depending on whether the neutron-proton interaction
is attractive or repulsive. At low density since the neutron-proton interaction is attractive, the neutron will acquire a net
positive charge while at the high density where the interaction can be repulsive, the charge cloud surrounding the neutron
will be negative.

The e↵ective coupling between neutrons and electrons is mediated by the in-medium photon (the plasmon) and can be
derived using standard techniques in quantum field theory (for more details see appendix A). An e↵ective Lagrangian for
the electron-neutron coupling can be derived in analogy with the plasmon-neutrino coupling described in Refs. [12, 13]. The
Feynman diagram in Fig. 1 shows the the exchange of a plasmon (wavy-line) which couples electrons to protons. The protons

e

e

n

n

p

p

FIG. 1: E↵ective interaction between electrons and neutrons induced by protons in the medium. The wavy line represents the plasmon.

in turn couple to neutrons by the short-range strong interaction depicted by a filled circle. From the diagram it follows that

Induced interaction is strong due to a 
strong neutron-proton interaction. Much 
larger than the magnetic moment 
interaction.   
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the plasmon-neutron coupling can be described by the e↵ective Lagrangian
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where n and A

⌫

are the neutron and plasmon fields, V
np

is the short-range nuclear potential, and ⇧µ⌫

p

is the proton polarization
correction to the photon in the plasma which can be decomposed into longitudinal and transverse components and is given
by
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where i, j are spatial indices and the four-momentum q

µ = (!, qq̂) [14]. ⇧L

p

and ⇧T

p

are complex functions in general but we
neglect the imaginary part in defining the plasmon-neutron coupling for the following reasons. When the protons are in the
normal phase, the imaginary part corresponds to real proton excitations and leads to Landau damping of the plasmon. Its
magnitude is small (proportional to m

2

p

!/q where m

p

is proton mass) and vanishes in the static limit ! ! 0 [15]. Instead
if protons are superconducting, the imaginary part is zero for ! < 2�
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is the energy gap in the proton spectrum
[16]. The real part of the longitudinal polarization function is denoted as �
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(!, q) and is given by
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where n

p

= p̄�

0

p = p

†
p is the proton density operator. The real part of the transverse polarization function is related to the

velocity-velocity correlation function of the proton fluid. Note that q
µ

⇧µ⌫ = 0 so that this e↵ective electron-neutron coupling
is manifestly gauge invariant.

Since the proton fraction in neutron stars is typically only a few percent, the proton Fermi momentum is small and protons
can be treated in the non-relativistic limit. The neutrons are also only mildly relativistic in the vicinity of nuclear saturation
density with a velocity v

Fn

= k

Fn

/m

n

' 1/3. This, together with the fact that scattering kinematics is restricted to the
region ! < q, implies that it is reasonable to neglect the spatial components of the currents in Eq. 1. Retaining only the
density-density component, the e↵ective interaction is described by the Lagrangian
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where e is the electron field and
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is the induced interaction, and the Thomas-Fermi momentum q

TF

includes the screening of electric charge due to protons,
electrons, and muons, and is defined by
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We now turn to discuss �
p

and V

np

, both of which are needed to calculate the e↵ective electron-neutron coupling C
enp

(q),
which characterizes the strength of the electron-neutron interaction relative to the Coulomb interaction between electrons
and protons. First, we note that due to the strong degeneracy of electrons at low temperature, the energy transfer ! ⇡ T

is small compared to the momentum transfer q and other relevant energy scales associated with the dense medium. For this
reason, the e↵ective coupling can be calculated in the static limit. In this limit, the susceptibility �
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(q) ⌘ �
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(! = 0, q) is
well known from non-relativistic many-body theory for a non-interacting Fermi gas and is given by
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where the one-loop polarization function ⇧0
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is defined in Eq. A5 and y = q/2k
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reason, the e↵ective coupling can be calculated in the static limit. In this limit, the susceptibility �

p

(q) ⌘ �

p

(! = 0, q) is
well known from non-relativistic many-body theory for a non-interacting Fermi gas and is given by
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where the one-loop polarization function ⇧0

p

is defined in Eq. A5 and y = q/2k
Fp

[15]. In a strongly interacting system,

3

the plasmon-neutron coupling can be described by the e↵ective Lagrangian

L
��n

= �
p
4⇡↵ V

np

n̄�

µ

n ⇧µ⌫

p

A

⌫

, (1)

where n and A

⌫

are the neutron and plasmon fields, V
np

is the short-range nuclear potential, and ⇧µ⌫

p

is the proton polarization
correction to the photon in the plasma which can be decomposed into longitudinal and transverse components and is given
by

⇧µ⌫

p

(!, q) = ⇧L
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(!, q) gµi(�ij � q̂

i

q̂

j)gj⌫ , (2)

where i, j are spatial indices and the four-momentum q

µ = (!, qq̂) [14]. ⇧L

p

and ⇧T

p

are complex functions in general but we
neglect the imaginary part in defining the plasmon-neutron coupling for the following reasons. When the protons are in the
normal phase, the imaginary part corresponds to real proton excitations and leads to Landau damping of the plasmon. Its
magnitude is small (proportional to m

2

p

!/q where m

p

is proton mass) and vanishes in the static limit ! ! 0 [15]. Instead
if protons are superconducting, the imaginary part is zero for ! < 2�

p

where �
p

is the energy gap in the proton spectrum
[16]. The real part of the longitudinal polarization function is denoted as �

p

(!, q) and is given by
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�iq·r hn
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(r, t)n
p

(0, 0)i , (3)

where n

p

= p̄�

0

p = p

†
p is the proton density operator. The real part of the transverse polarization function is related to the

velocity-velocity correlation function of the proton fluid. Note that q
µ

⇧µ⌫ = 0 so that this e↵ective electron-neutron coupling
is manifestly gauge invariant.

Since the proton fraction in neutron stars is typically only a few percent, the proton Fermi momentum is small and protons
can be treated in the non-relativistic limit. The neutrons are also only mildly relativistic in the vicinity of nuclear saturation
density with a velocity v

Fn

= k

Fn

/m

n

' 1/3. This, together with the fact that scattering kinematics is restricted to the
region ! < q, implies that it is reasonable to neglect the spatial components of the currents in Eq. 1. Retaining only the
density-density component, the e↵ective interaction is described by the Lagrangian

L
e�n

= �ē�
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n , (4)

where e is the electron field and
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(q)�
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(!, q) , (5)

is the induced interaction, and the Thomas-Fermi momentum q

TF

includes the screening of electric charge due to protons,
electrons, and muons, and is defined by
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. (6)

We now turn to discuss �
p

and V

np

, both of which are needed to calculate the e↵ective electron-neutron coupling C
enp

(q),
which characterizes the strength of the electron-neutron interaction relative to the Coulomb interaction between electrons
and protons. First, we note that due to the strong degeneracy of electrons at low temperature, the energy transfer ! ⇡ T

is small compared to the momentum transfer q and other relevant energy scales associated with the dense medium. For this
reason, the e↵ective coupling can be calculated in the static limit. In this limit, the susceptibility �
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(q) ⌘ �

p

(! = 0, q) is
well known from non-relativistic many-body theory for a non-interacting Fermi gas and is given by
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where the one-loop polarization function ⇧0

p

is defined in Eq. A5 and y = q/2k
Fp

[15]. In a strongly interacting system,

4

higher order corrections to the one-loop polarization function can become relevant but are known not change the qualitative
behavior. We estimate the size of these corrections by noting that in the long-wavelength limit �

p

(q ! 0) = �@n

p

/@µ

p

where n

p

and µ

p

are the proton number density and chemical potential, respectively. Using microscopic calculations of the
dense matter equation of state (EoS) reported in Refs. [17] and [18] we have calculated this derivative to find corrections in
the range 20% � 50% in the vicinity of n = n

0

, and an enhancement by a factor of two at the highest densities (n ' 0.48
fm�3) encountered in the core. In contrast, corrections to �

p

(q) due to proton superconductivity are small in the static limit
for typical values of the superconducting gap �

p

' 1 MeV ⌧ µ

p

and can be safely neglected [16].
The potential V

np

(q) describes the interaction between neutrons and protons in the medium and is in general a complicated
function of density and momentum. However, later in section IV we shall find that typical momentum transfer involved in
electron collisions is in the range of a few times q

TF

, and this justifies a low momentum expansion of the form

V

np

(q) = V

(0)

np

+ V

(2)

np

q

2

k

2

Fe

. (8)

The e↵ective interaction at zero momentum exchange can be extracted from the EoS of dense matter through the relation

V

(0)

np

= V

np

(q ! 0) =
@

2E
@n

p

@n

n

, (9)

where E(n
n

, n

p

) is the energy density of the liquid of neutrons and protons with density n

n

and n

p

, respectively. We use EoS
models described in Refs. [17] and [18], which are based on non-perturbative calculations using realistic two and three nucleon
interactions, to calculate E(n

n

, n

p

) and the second derivative @

2E(n
n

, n

p

)/@n
n

@n

p

. Numerical di↵erences between them can
be viewed as a rough error estimate and for this reason we shall present results for both EoSs. The second term in the

expansion V

(2)

np

cannot be derived from the EoS, but it is related to the L = 1 Fermi liquid parameters. Since we are unaware

of a microscopic calculation of these parameters in neutron-rich matter, we have opted to use a range V (2)

np

= 5⇥10�6�5⇥10�5

MeV�2 as suggested by calculations in symmetric nuclear matter from Ref. [19].
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FIG. 2: Left panel: The strength of the induced electron-neutron interaction defined in Eq. 5 as a function of q at nuclear saturation
density n0 = 0.16 fm�3. Right panel: C2

enp(q = 3qTF) as a function of density.

The momentum and density dependence of the strength of the induced coupling C
enp

is shown in Fig. 2 for the two models

defined as follows. In model A, we use the EoS from Ref. [17] to obtain V

(0)

np

and the band is obtained by varying V

(2)

np

over

the range mentioned above. In model B, we use the EoS from Ref. [18] to obtain V

(0)

np

and the band is obtained by varying

V

(2)

np

over the same range.
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FIG. 8: The ratio ⌘ref/⌘en for two proton critical temperatures, T p
c = 109 K (left) and T p

c = 1010 K (right) for densities in the core.

two representative values of the proton critical temperature to asses the relative importance of electron-neutron scattering.
⌘

ref

is calculated using the fitting formula from [8] and is described in Appendix B 2 for reference. As before, in regions
where ⌘

ref

/⌘

en

> 1, electron-neutron scattering is the dominant scattering mechanism for electrons. The results in the figure
indicate that electron-neutron scattering is relevant everywhere in the core. Further, because ⌘

ref

is a weaker function of the
superconducting gap compared to 

ref

, we find that ⌘
ref

/⌘

en

> 1 even when T ' T

p

c

.
The general trend that the electron-neutron contribution is more relevant for ⌘ rather than , and that it remains relevant

even when proton superconductivity is weak or absent, can be understood by noting that screening is more important for 
than it is for ⌘. This is because low momentum scattering with energy transfer ! ' T can make an important contribution
to  and is reflected by the fact that  / ⇤3 where ⇤ is the momentum scale set by the physics of screening, while ⌘ / ⇤
(c.f. the dependence on q

TF

in Eqs. 40 and 42). In the case of the density-density interaction that we have considered
between electrons and neutrons ⇤ = q

TF

⇡ (4↵m
p

k

Fp

/⇡)1/2, while for the current-current interaction between electrons
considered in [7, 8] the relevant scale of the screening momentum is ⇤ ⇡ (⇡↵k2

Fp

�
p

)1/3 when protons are superconducting,

and ⇤ ⇡ (2↵Tk2
Fp

)1/3 when protons are normal.
We have calculated both 

en

and ⌘

en

for the case when neutrons are superfluid and found them to be too large compared
to 

ref

and ⌘

ref

to be relevant. Here, electron scattering occurs either by absorption or emission of the superfluid phonon with
energy ! = qv

n

. Since large energy transfer is exponentially suppressed due to degeneracy and typical ! ' T , the electron-
phonon scattering is highly peaked in the forward direction and contributes little to the electron transport properties. Finally,
we note that the electrical conductivity is only relevant when protons are normal, and in this case we find that electron-
neutron scattering can be as relevant as electron-proton scattering when hC2

enp

i & 1. However, this warrants a careful study
of the induced interaction between the electron and neutron currents mediated by transverse plasmons in the normal state
and is beyond the scope of this study.

B. Electron Transport in the Crust

In the inner crust, ions form a crystal and electron-ion scattering is suppressed due to correlations for T < T

P

where
T

P

= ~!
P

/k

B

is the ion plasma temperature and !

P

=
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4⇡↵Z2

n

I

/M

I

is the plasma frequency of ions with charge Z, mass
M

I

, and number density n

I

. The dominant electron scattering processes considered in earlier work were due to electron-
phonon and electron-impurity interactions. When the impurity concentration is negligible, the electron contribution to , �,
and ⌘ at low temperature is limited by the emission or absorption of lattice phonons by electrons and has been studied in
earlier work [5, 25–27]. The importance of Umklapp scattering was realized early in Ref. [5] because this allows the electron
momentum to change by a large amount, K = (2⇡/a)(n

x

x̂ + n

y

ŷ + n

z

ẑ), where n

i

are integers, even for relatively small
energy transfer ! ' T ⌧ |K| . For this reason, electron-ion scattering remains very e↵ective down to low temperatures until

Shear Viscosity in the Core
When neutrons are normal and protons are superconducting electron-
neutron scattering dominates
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The electron-phonon coupling is well known, and at small momentum it is described by the Lagrangian
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, (17)

where ⇠

i

is the canonically normalized phonon field which is related to ion density fluctuations, �n
I

= �f

I

r
i

⇠

i

, and f

I

=p
n

I

/m

I

[15]. Density fluctuations of the ion lattice also couple to the neutrons due to the short-range neutron-ion potential
V

nI

. The coupling between low energy neutrons and lattice phonons is described by the Lagrangian

L
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†
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i

⇠

i

. (18)

The electron-neutron interaction follows from Fig. 4, where the phonon-electron and phonon-neutron vertices are given
by Eq. 17 and Eq. 18, respectively. Using the longitudinal phonon propagator D(q) = (!2 � !

2(q))�1 where the phonon
dispersion relation is !2(q) = v

2

l

q

2 and v

l

is the velocity of the longitudinal mode, we find that the induced interaction is
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In the static limit where ! ⌧ v

l

q this simplifies to

U
enI
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TFe
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, (20)

which coincides with the result obtained earlier in Eq. 10 because C
enI

(q) = �V

nI

Zf

2

I

/v

2

l

for small q < ⇡/a.

IV. ELECTRON CONDUCTIVITIES AND SHEAR VISCOSITY

We now turn to the calculation of the electron thermal conductivity, electrical conductivity, and shear viscosity due to
electron-neutron scattering. Both in the crust and in the core, the thermal and electrical conductivity, and the shear viscosity
are given by
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respectively, and these expressions are written in a form familiar from kinetic theory. The relevant transport mean free
paths are obtained as simple variational solutions to the Boltzmann equation for degenerate and relativistic electrons [5]. For
electron-neutron scattering described by an e↵ective interaction of the form in Eq. 5, the mean free paths are given by
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respectively. Here, the strength of the induced coupling in the general case is defined as C
en

which stands for C
enp

in the core
and C

enI

in the crust, and

I

/�/⌘

(q) =

Z 1

�1

d!

2⇡

�!

e

�! � 1
S

n

(!, q) g
/�/⌘
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Bertoni, Rrapaj and Reddy (2014)



Summary

• Thermal relaxation in neutron stars is sensitive to the low 
temperature properties of the crust.   	


• Thermal and transport properties of the inner crust 
(super-solid) can be calculated in terms of a few low-
energy constants (LEC) of a effective theory for phonons 
and electrons.	


• Goldstone bosons in the crust and the core can decay into 
electron-hole states - this limits their contribution to 
transport.   	


• The induced interaction between electrons and neutrons 
is relevant in the neutron star core. 
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Figure 11. Models for the crust relaxation of MXB1659-29. See text for description. The
six data points in the left panel are from [40], assuming a source distance of 8.5 kpc.

5.2.1. Mapping the thermal conductivity: MXB1659-29.

The crust relaxation of MXB 1659-29 has been studied in detail by Brown & Cumming in
[43], and our results amply confirm their analysis. The accretion outburst was long enough
that the crust could reach a steady state: this is very important since it implies that the
initial T profile for the crust relaxation was independent of CV , providing some relief from
the CV/� degeneracy in ⇤th, Eq. 39.

As was shown in [43] there is a one-to-one mapping between the cooling curve, Te(t),
and the temperature profile of the crust, T (z) at the end of the outburst at time t0. At time
t � t0 after relaxation commences, the observed surface temperature Te is determined by the
temperature T (zt�t0) at a depth zt�t0 such that the thermal relaxation time from the surface
to this depth is ⇤th ⇥ t. (This is the "l2-effect" in Eq.39.) The schematic in the grey shaded
inset in the left panel of Fig. 11 shows: phase "1" when Te is determined by the outer crust
evolution; in "2" it is controlled by the evolution of matter at densities ⇥ ⇥ 1011 � 1013 g
cm�3; in phase "3" the evolution is sensitive to the deep inner crust; and, finally, in phase
"4", the crust has relaxed with the core and Te reflects the core temperature. Approximating
CV and � by power laws in T , the evolution is described by power laws, i.e., straight lines
in a Te-Log(t � t0) plot.

The thermal conductivity of a pure crystalline crust turns out to be much too high to
reproduce observed cooling, but good fits are obtained when � is reduced due to additional
scattering by impurities. The cooling curves in the left panel of Fig. 11 illustrate three
cases with impurity parameters Qimp = 2.5, 5, and 7.5, as well as a pure crystalline crust,
Qimp = 0. A value of Qimp = 5 is favored in this set of results, but is dependent on the
assumed crust thickness and accretion rate (see [43] for a complete study). A finer study
[45] with a density dependent Qimp reveals that the cooling curves are mostly sensitive to
the value of Qimp at ⇥ > 1013 g cm�3, so that MXB 1659-29, and also KS 1731-260, are

•Late time signal is 
sensitive to inner crust 
thermal and transport  
properties.	

•Impurity parameter 
can be fixed at earlier 
times. 	

•Variations in the 
pairing gap (changes the 
fraction of normal 
neutrons) are 
discernible !  

Page & Reddy (2012)  

Shternin & Yakovlev (2007)	

Brown & Cumming (2009)

Page & Reddy (2012)  



A: Low Tc - large normal fraction	

B: High Tc- small normal fraction
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5.2.1. Mapping the thermal conductivity: MXB1659-29.

The crust relaxation of MXB 1659-29 has been studied in detail by Brown & Cumming in
[43], and our results amply confirm their analysis. The accretion outburst was long enough
that the crust could reach a steady state: this is very important since it implies that the
initial T profile for the crust relaxation was independent of CV , providing some relief from
the CV/� degeneracy in ⇤th, Eq. 39.

As was shown in [43] there is a one-to-one mapping between the cooling curve, Te(t),
and the temperature profile of the crust, T (z) at the end of the outburst at time t0. At time
t � t0 after relaxation commences, the observed surface temperature Te is determined by the
temperature T (zt�t0) at a depth zt�t0 such that the thermal relaxation time from the surface
to this depth is ⇤th ⇥ t. (This is the "l2-effect" in Eq.39.) The schematic in the grey shaded
inset in the left panel of Fig. 11 shows: phase "1" when Te is determined by the outer crust
evolution; in "2" it is controlled by the evolution of matter at densities ⇥ ⇥ 1011 � 1013 g
cm�3; in phase "3" the evolution is sensitive to the deep inner crust; and, finally, in phase
"4", the crust has relaxed with the core and Te reflects the core temperature. Approximating
CV and � by power laws in T , the evolution is described by power laws, i.e., straight lines
in a Te-Log(t � t0) plot.

The thermal conductivity of a pure crystalline crust turns out to be much too high to
reproduce observed cooling, but good fits are obtained when � is reduced due to additional
scattering by impurities. The cooling curves in the left panel of Fig. 11 illustrate three
cases with impurity parameters Qimp = 2.5, 5, and 7.5, as well as a pure crystalline crust,
Qimp = 0. A value of Qimp = 5 is favored in this set of results, but is dependent on the
assumed crust thickness and accretion rate (see [43] for a complete study). A finer study
[45] with a density dependent Qimp reveals that the cooling curves are mostly sensitive to
the value of Qimp at ⇥ > 1013 g cm�3, so that MXB 1659-29, and also KS 1731-260, are
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properties.	
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Field theoretic analysis

gauge transformations defined in Eqs. 3, 4, 3

∫

d4x
1

3!
ϵµνσλϵabc

(

C1 A
p
µ(x) + C2 ∂µφ(x)

)

(∂νz
a(x)∂σz

b(x)∂λz
c(x)) . (38)

Hence, the most general form of L0 is

L0(∂µφ,∂µz
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p
µ, gµν) = f(X,W a, Hab)

+
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√
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ϵµνσλϵabc
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p
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)

(∂νz
a∂σz

b∂λz
c) .

(39)

The term proportional to C2 is a total derivative that becomes relevant only in presence of non-trivial
topological configurations (vortices) for the field φ [8]. This would be relevant for calculations of vortex-
phonon interactions but for now on we disregard this term and restrict our discussion to vortex free
configurations.

4.2 Thermodynamic matching

Extending the analogy with the neutron superfluid case further we can relate L0 to the free energy of
the neutron-proton system. The free energy Ω[An

µ, A
p
µ, gµν ] is proportional to the log of the partition

function. Following the discussion in the pure neutron case, one can show that for space-time indepen-
dent external fields, gµν(x) = ḡµν , Ap

µ(x) = Āp
µ, A

n
µ(x) = Ān

µ, Ω it is also equal to L0 evaluated at the
classical solution φ|0 = 0, ξa|0 = 0. Hence,

Z[Ān
µ, Ā

p
µ, ḡµν ] = eiW [Ān

µ,Ā
p
µ,ḡµν ] = e−iV TΩ[µn,µp,ḡµν ] = eiV TL0(0,δ

a
µ,Ā

n
µ,Ā

p
µ,ḡµν) , (40)

where V T =
∫

d4x
√
−ḡ. For this choice of the many body ground state, X0 = Ān

µĀ
µ n, W a

0 = 0 and
Hab = ḡab. Therefore,

−Ω[µn, µp, ḡµν ] = f(X = X0,W
a = 0, Hab = ḡab) +

1√
−ḡ

C1 (µp +mp) . (41)

The constant C1 can be determined from the requirement that ∂Ω
∂µp

= C1√
−ḡ p

. Thus, we see that C1

is the density of protons for a configuration whose metric has determinant −1. Symbolically, C1 = nη
p,

where ηµν is a particularly convenient choice (also see footnote 5) for a metric with determinant −1.
When we consider the functional form of f , we encounter a feature different from the previous

case where we considered the pure neutron superfluid. There, we were able to determine the complete
dependence of the function f on its arguments from the free energy function Ω (L0(X) = P (Y ) =
−Ωn(Y )), i.e. from a calculation of the partition function with the specific form Ān

µ = (mn + µn, 0⃗) for

the external field. In the mixed case, however, since Dµφ∂µza|eq = 0 for Ān
µ = (mn + µn, 0⃗), it is not

possible to calculate the dependence of f on W a from the free energy calculation in this external field. 4

To determine the dependence of f on W a one needs to evaluate the partition function Z for a space-time

3The term
∫

d4x
C3

3!
ϵµνσλϵabc

(

An
µ(x)

)

(∂νz
a(x)∂σz

b(x)∂λz
c(x)) (35)

can be rewritten as,
∫

d4x
C3

3!

[

3!
√

g det
(

IH
)

− ϵµνσλϵabc
(

∂µφ(x)
)

(∂νz
a(x)∂σz

b(x)∂λz
c(x))

]

, (36)

where,

IH =

[

X W aT

W a Hab

]

. (37)

This shows that any term proportional to C3 can be reabsorbed by a redefinition of the function f and the coefficient C2.
4This fact is intuitively understandable. In the non-relativistic limit [14] we have W a ∼ mn(− 1

mn
∂aφ − ∂0ξ

a +
1

mn
∂iφ∂iξ

a) = mn(van − ∂0ξa − vn.∇ξa) which is the relative velocity between the neutron superfluid and the proton

clusters. The dependence on W a therefore represents the interaction between the superfluid neutrons and the lattice when
they are moving relative to each other, and can not be calculated by a ground state evaluation of the free energy.
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The nonlinear action of the translations group on the Goldstone fields is specified by:

xb → x′
b = xb + ab, ξb(x) → ξ′b(x

′) = ξb(x) + ab , (27)

as can be verified by left multiplication of γ ∈ G/H with g = eia
bP b ∈ G.

Promoting the global symmetry to local symmetry, a generally covariant formulation [21, 14] of the
phonon dynamics in the background metric gµν can be readily achieved by introducing a set of fields
that transform as scalar fields under the general coordinate transformations of Eqs. 2:

za(x) = xa − ξa(x) a = 1, 2, 3 . (28)

The fields za(xµ) can be thought of as one particular choice of body-fixed coordinates 2 of a material
point located at xµ = (t, x⃗). With this choice the body-fixed coordinates coincide with the “laboratory”
coordinates (xa, gab) when the displacement field ξa vanishes.

As in the pure neutron case, the partition function in the presence of generic external fields An
µ(x),

Ap
µ(x), gµν(x), admits a low-energy representation in terms of the four Goldstone modes φ and ξa:

Z[An
µ, A

p
µ, gµν ] =

∫

[dΨn][dΨp]e
iS[Ψn,ΨI ,A

n
µ,A

p
µ,gµν ] →

∫

[dφ][dξa]eiSeff [φ,ξ
a,An

µ,A
p
µ,gµν ] . (29)

At the end, we will evaluate the partition function for space-time independent external fields Ān
µ, Ā

p
µ

and ḡµν , specifying a particular density, and lattice shape for the system.
Seff represents the effective action of ξa (or equivalently za) and φ in the presence of external fields.

We can organize the terms in Seff according to the same power counting introduced earlier in our
discussion of the superfluid, i.e. in increasing difference between the number of derivative operators and
the Goldstone fields,

Seff [φ, ξ
a, An

µ, A
p
µ, gµν ] =

∫

d4x
√
−g

[

L0(∂µφ, ∂µz
a, An

µ, A
p
µ, gµν) (30)

+ L1(Dν∂µφ, Dν∂µz
a, DµA

n
ν ...) + ...

]

. (31)

Symmetries impose powerful constraints on the form of Leff . Since za transform as scalars, ∂µza

transforms as a contravariant vector. The building blocks of the scalar function Leff are scalar com-
binations of An

µ(x), A
p
µ(x), gµν(x), ∂µφ, ∂µz

a, and their covariant derivatives. Symmetry under phase
rotations of the neutrons, Eq. 3, implies that An

µ(x) should appear in a combination such that the trans-
formation An

µ(x) → An
µ(x) + ∂µθn(x) leaves the effective action invariant. The same is required for the

protons. In the pure neutron case we found that gauge symmetries implied that ∂µφ and An
µ(x) could

appear only in the combination Dµφ. To lowest order in the power counting, the scalar combinations
that can be constructed from the gauge invariant combinations are

X = gµνDµφDνφ (32)

W a = gµν Dµφ∂νz
a (33)

Hab = gµν ∂µz
a∂νz

b . (34)

In addition to these building blocks, other possibilities arise in the mixed case that were not present in
the case of a pure neutron superfluid. The following terms only change by a total derivative on making

2These are the coordinates in a frame frozen in the body of the solid. If one follows a material point in the solid, its
coordinates in this frame remain constant.
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b = xb + ab, ξb(x) → ξ′b(x

′) = ξb(x) + ab , (27)

as can be verified by left multiplication of γ ∈ G/H with g = eia
bP b ∈ G.

Promoting the global symmetry to local symmetry, a generally covariant formulation [21, 14] of the
phonon dynamics in the background metric gµν can be readily achieved by introducing a set of fields
that transform as scalar fields under the general coordinate transformations of Eqs. 2:
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The fields za(xµ) can be thought of as one particular choice of body-fixed coordinates 2 of a material
point located at xµ = (t, x⃗). With this choice the body-fixed coordinates coincide with the “laboratory”
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µ, gµν ] =

∫

[dΨn][dΨp]e
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n
µ,A
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∫

[dφ][dξa]eiSeff [φ,ξ
a,An
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p
µ,gµν ] . (29)
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µ

and ḡµν , specifying a particular density, and lattice shape for the system.
Seff represents the effective action of ξa (or equivalently za) and φ in the presence of external fields.
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a, An

µ, A
p
µ, gµν ] =

∫

d4x
√
−g

[

L0(∂µφ, ∂µz
a, An

µ, A
p
µ, gµν) (30)

+ L1(Dν∂µφ, Dν∂µz
a, DµA

n
ν ...) + ...

]

. (31)

Symmetries impose powerful constraints on the form of Leff . Since za transform as scalars, ∂µza

transforms as a contravariant vector. The building blocks of the scalar function Leff are scalar com-
binations of An

µ(x), A
p
µ(x), gµν(x), ∂µφ, ∂µz

a, and their covariant derivatives. Symmetry under phase
rotations of the neutrons, Eq. 3, implies that An

µ(x) should appear in a combination such that the trans-
formation An

µ(x) → An
µ(x) + ∂µθn(x) leaves the effective action invariant. The same is required for the

protons. In the pure neutron case we found that gauge symmetries implied that ∂µφ and An
µ(x) could

appear only in the combination Dµφ. To lowest order in the power counting, the scalar combinations
that can be constructed from the gauge invariant combinations are

X = gµνDµφDνφ (32)

W a = gµν Dµφ∂νz
a (33)

Hab = gµν ∂µz
a∂νz

b . (34)

In addition to these building blocks, other possibilities arise in the mixed case that were not present in
the case of a pure neutron superfluid. The following terms only change by a total derivative on making

2These are the coordinates in a frame frozen in the body of the solid. If one follows a material point in the solid, its
coordinates in this frame remain constant.
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Partition function in collective variables:

Effective Action and Lagrange Density:

gauge transformations defined in Eqs. 3, 4, 3

∫

d4x
1

3!
ϵµνσλϵabc

(

C1 A
p
µ(x) + C2 ∂µφ(x)

)

(∂νz
a(x)∂σz

b(x)∂λz
c(x)) . (38)

Hence, the most general form of L0 is

L0(∂µφ,∂µz
a, An

µ, A
p
µ, gµν) = f(X,W a, Hab)

+
1

3!
√
−g

ϵµνσλϵabc
(

C1 A
p
µ + C2 ∂µφ

)

(∂νz
a∂σz

b∂λz
c) .

(39)

The term proportional to C2 is a total derivative that becomes relevant only in presence of non-trivial
topological configurations (vortices) for the field φ [8]. This would be relevant for calculations of vortex-
phonon interactions but for now on we disregard this term and restrict our discussion to vortex free
configurations.

4.2 Thermodynamic matching

Extending the analogy with the neutron superfluid case further we can relate L0 to the free energy of
the neutron-proton system. The free energy Ω[An

µ, A
p
µ, gµν ] is proportional to the log of the partition

function. Following the discussion in the pure neutron case, one can show that for space-time indepen-
dent external fields, gµν(x) = ḡµν , Ap

µ(x) = Āp
µ, A

n
µ(x) = Ān

µ, Ω it is also equal to L0 evaluated at the
classical solution φ|0 = 0, ξa|0 = 0. Hence,

Z[Ān
µ, Ā

p
µ, ḡµν ] = eiW [Ān

µ,Ā
p
µ,ḡµν ] = e−iV TΩ[µn,µp,ḡµν ] = eiV TL0(0,δ

a
µ,Ā

n
µ,Ā

p
µ,ḡµν) , (40)

where V T =
∫

d4x
√
−ḡ. For this choice of the many body ground state, X0 = Ān

µĀ
µ n, W a

0 = 0 and
Hab = ḡab. Therefore,

−Ω[µn, µp, ḡµν ] = f(X = X0,W
a = 0, Hab = ḡab) +

1√
−ḡ

C1 (µp +mp) . (41)

The constant C1 can be determined from the requirement that ∂Ω
∂µp

= C1√
−ḡ p

. Thus, we see that C1

is the density of protons for a configuration whose metric has determinant −1. Symbolically, C1 = nη
p,

where ηµν is a particularly convenient choice (also see footnote 5) for a metric with determinant −1.
When we consider the functional form of f , we encounter a feature different from the previous

case where we considered the pure neutron superfluid. There, we were able to determine the complete
dependence of the function f on its arguments from the free energy function Ω (L0(X) = P (Y ) =
−Ωn(Y )), i.e. from a calculation of the partition function with the specific form Ān

µ = (mn + µn, 0⃗) for

the external field. In the mixed case, however, since Dµφ∂µza|eq = 0 for Ān
µ = (mn + µn, 0⃗), it is not

possible to calculate the dependence of f on W a from the free energy calculation in this external field. 4

To determine the dependence of f on W a one needs to evaluate the partition function Z for a space-time

3The term
∫

d4x
C3

3!
ϵµνσλϵabc

(

An
µ(x)

)

(∂νz
a(x)∂σz

b(x)∂λz
c(x)) (35)

can be rewritten as,
∫

d4x
C3

3!

[

3!
√

g det
(

IH
)

− ϵµνσλϵabc
(

∂µφ(x)
)

(∂νz
a(x)∂σz

b(x)∂λz
c(x))

]

, (36)

where,

IH =

[

X W aT

W a Hab

]

. (37)

This shows that any term proportional to C3 can be reabsorbed by a redefinition of the function f and the coefficient C2.
4This fact is intuitively understandable. In the non-relativistic limit [14] we have W a ∼ mn(− 1

mn
∂aφ − ∂0ξ

a +
1

mn
∂iφ∂iξ

a) = mn(van − ∂0ξa − vn.∇ξa) which is the relative velocity between the neutron superfluid and the proton

clusters. The dependence on W a therefore represents the interaction between the superfluid neutrons and the lattice when
they are moving relative to each other, and can not be calculated by a ground state evaluation of the free energy.
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Partition function at constant external fields:

The nonlinear action of the translations group on the Goldstone fields is specified by:

xb → x′
b = xb + ab, ξb(x) → ξ′b(x

′) = ξb(x) + ab , (27)

as can be verified by left multiplication of γ ∈ G/H with g = eia
bP b ∈ G.

Promoting the global symmetry to local symmetry, a generally covariant formulation [21, 14] of the
phonon dynamics in the background metric gµν can be readily achieved by introducing a set of fields
that transform as scalar fields under the general coordinate transformations of Eqs. 2:

za(x) = xa − ξa(x) a = 1, 2, 3 . (28)

The fields za(xµ) can be thought of as one particular choice of body-fixed coordinates 2 of a material
point located at xµ = (t, x⃗). With this choice the body-fixed coordinates coincide with the “laboratory”
coordinates (xa, gab) when the displacement field ξa vanishes.

As in the pure neutron case, the partition function in the presence of generic external fields An
µ(x),

Ap
µ(x), gµν(x), admits a low-energy representation in terms of the four Goldstone modes φ and ξa:

Z[An
µ, A

p
µ, gµν ] =

∫

[dΨn][dΨp]e
iS[Ψn,ΨI ,A

n
µ,A

p
µ,gµν ] →

∫

[dφ][dξa]eiSeff [φ,ξ
a,An

µ,A
p
µ,gµν ] . (29)

At the end, we will evaluate the partition function for space-time independent external fields Ān
µ, Ā

p
µ

and ḡµν , specifying a particular density, and lattice shape for the system.
Seff represents the effective action of ξa (or equivalently za) and φ in the presence of external fields.

We can organize the terms in Seff according to the same power counting introduced earlier in our
discussion of the superfluid, i.e. in increasing difference between the number of derivative operators and
the Goldstone fields,

Seff [φ, ξ
a, An

µ, A
p
µ, gµν ] =

∫

d4x
√
−g

[

L0(∂µφ, ∂µz
a, An

µ, A
p
µ, gµν) (30)

+ L1(Dν∂µφ, Dν∂µz
a, DµA

n
ν ...) + ...

]

. (31)

Symmetries impose powerful constraints on the form of Leff . Since za transform as scalars, ∂µza

transforms as a contravariant vector. The building blocks of the scalar function Leff are scalar com-
binations of An

µ(x), A
p
µ(x), gµν(x), ∂µφ, ∂µz

a, and their covariant derivatives. Symmetry under phase
rotations of the neutrons, Eq. 3, implies that An

µ(x) should appear in a combination such that the trans-
formation An

µ(x) → An
µ(x) + ∂µθn(x) leaves the effective action invariant. The same is required for the

protons. In the pure neutron case we found that gauge symmetries implied that ∂µφ and An
µ(x) could

appear only in the combination Dµφ. To lowest order in the power counting, the scalar combinations
that can be constructed from the gauge invariant combinations are

X = gµνDµφDνφ (32)

W a = gµν Dµφ∂νz
a (33)

Hab = gµν ∂µz
a∂νz

b . (34)

In addition to these building blocks, other possibilities arise in the mixed case that were not present in
the case of a pure neutron superfluid. The following terms only change by a total derivative on making

2These are the coordinates in a frame frozen in the body of the solid. If one follows a material point in the solid, its
coordinates in this frame remain constant.
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coordinate transformations,

xµ → x
′µ = xµ + aµ(x)

gµν(x) → g
′µν(x′) = gρσ(x)

∂x
′µ

∂xρ

∂x
′ν

∂xσ

Aµ(x) → A
′µ(x′) = Aσ(x)

∂x
′µ

∂xσ
,

(2)

these transformations include both rotations and boosts as special cases of local space and time trans-
lations. The action is also invariant under local phase rotations of neutrons,

Ψn(x) → Ψ′
n(x) = exp(−iθn(x))Ψn(x)

An
µ(x) → A

′n
µ (x) = An

µ(x) − ∂µθ
n(x) ,

(3)

and local phase rotations of protons,

Ψp(x) → Ψ′
p(x) = exp(−iθp(x))Ψp(x)

Ap
µ(x) → A

′p
µ (x) = Ap

µ(x) − ∂µθ
p(x) .

(4)

The reason for extending the global symmetries to local symmetries is that correlation functions of
the conserved currents can be analyzed very simply by taking appropriate functional derivatives of the
generating functional W [An

µ, A
p
µ, gµν ] with respect to the external fields An

µ(x), A
p
µ(x) and gµν(x). The

generating functional is defined in the standard path integral representation as

eiW [An
µ,A

p
µ,gµν ] =

∫

[dΨn][dΨp]e
iS[Ψn,Ψp,A

n
µ,A

p
µ,gµν ]

= Z[An
µ, A

p
ν , gµν ] ;

(5)

and Z[An
µ, A

p
ν , gµν ] is thermodynamic partition function. For example, the derivative with respect to

the zeroth component of the external field Aµ defines the number density as given by

⟨Ω|n̂n(x)|Ω⟩An
µ ,Ap

µ,gµν
=

δW [An
µ, A

p
µ, gµν ]

δAn
0 (x)

=
1

iZ

δZ[An
µ, A

p
µ, gµν ]

δAn
0 (x)

. (6)

In order to evaluate correlation functions in an equilibrium state with specified number density, the
functional derivatives with respect to Aµ(x) are evaluated at specific values corresponding to appropri-
ate chemical potentials as required by Eq. 6. For neutrons An

µ(x) = Ān
µ = (µn +mn,0), where µn is the

usual non-relativistic chemical potential and similarly for protons Ap
µ(x) = Āp

µ = (µp +mp,0) and µp

is the corresponding non-relativistic chemical potential. Moreover, functional derivatives with respect
to gµν(x) are evaluated at space-time metric gµν(x) = ḡµν . For the pure neutron sector (Section 3), it
suffices to set the equilibrium metric to be the Minkowski metric, ḡµν = ηµν . In the case of coupled
system, since the spatial components of a space-time independent metric specifies the lattice structure,
we will allow ḡµν to be more general in Section 4. In the following we discuss specific cases in which the
ground state |Ω⟩ spontaneously breaks number and translation symmetries of the underlying Hamilto-
nian. First, in Section 3 we discuss the simple case of a superfluid which breaks the U(1) symmetry
associated with number conservation, and subsequently in Section 4 we discuss the system of interest
where both the global U(1) and space-time translation symmetries are simultaneously broken.

3 One component superfluid

3.1 Fields and the effective lagrangian

To illustrate the main ideas we first consider a single component superfluid such as degenerate neutron
matter where attractive interactions lead to the formation of Cooper pairs and a transition to a superfluid
state. Here, the two-neutron operator has a non-zero expectation value and in equilibrium

⟨Ω|Ψn(x)Ψ
T
n (x)|Ω⟩ = Cγ5Θ(x) = Cγ5|Θ| . (7)

4
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′µ(x′) = Aσ(x)

∂x
′µ

∂xσ
,

(2)

these transformations include both rotations and boosts as special cases of local space and time trans-
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n(x) ,

(3)

and local phase rotations of protons,
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(4)

The reason for extending the global symmetries to local symmetries is that correlation functions of
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generating functional W [An

µ, A
p
µ, gµν ] with respect to the external fields An

µ(x), A
p
µ(x) and gµν(x). The

generating functional is defined in the standard path integral representation as

eiW [An
µ,A

p
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∫

[dΨn][dΨp]e
iS[Ψn,Ψp,A

n
µ,A

p
µ,gµν ]

= Z[An
µ, A

p
ν , gµν ] ;

(5)

and Z[An
µ, A

p
ν , gµν ] is thermodynamic partition function. For example, the derivative with respect to
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⟨Ω|n̂n(x)|Ω⟩An
µ ,Ap

µ,gµν
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δW [An
µ, A

p
µ, gµν ]

δAn
0 (x)

=
1

iZ

δZ[An
µ, A

p
µ, gµν ]

δAn
0 (x)

. (6)
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associated with number conservation, and subsequently in Section 4 we discuss the system of interest
where both the global U(1) and space-time translation symmetries are simultaneously broken.

3 One component superfluid

3.1 Fields and the effective lagrangian
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state. Here, the two-neutron operator has a non-zero expectation value and in equilibrium
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T
n (x)|Ω⟩ = Cγ5Θ(x) = Cγ5|Θ| . (7)

4

coefficients. In order to evaluate the partition function Z[An
µ, gµν ] we expand the effective action about

its saddle point φ0 which satisfies

δSeff [D̄µφ(x), ηµν ]

δφ(x)
|φ0 = 0 = −∂µ

dLeff(D̄µφ(x), ηµν )

d∂µφ(x)
|φ0 , (13)

minimizes the Euclidean action, and is well behaved at infinity. For general external fields An
µ(x), the

solution to Eq. 13 is a functional of the external field, φ0[An
µ]. However, for our homogeneous and static

system with constant external fields the well behaved solution is φ0 = 0. Expanding about this point
we can write

Seff [D̄µφ, ηµν ] = Seff |φ0=0 +
1

2

∫

d4xd4x′ϕ(x)ϕ(x′)
δ2Seff

δφ(x)δφ(x′)
|φ0 + ... , (14)

where ϕ = φ− φ0, and thus Eq. 12 can be evaluated as a loop expansion

eiW [Ān
µ,ηµν ] = eiSeff |φ0=0+W1−loop+··· (15)

eiW1−loop =

∫

[dϕ]ei(
1
2

∫
d4xd4x′ϕ(x)ϕ(x′)

δ2Seff
δφ(x)δφ(x′)

|φ0+...) , (16)

where we have explicitly displayed only the quadratic (Gaussian) part of the functional integral in [dϕ]
which corresponds to the one-loop approximation. Let us now discuss this loop expansion in light of the
EFT power counting. The key observation, which is a generic feature of low-energy effective theories [18],
is the following: within the momentum (gradient) expansion of the EFT, loop diagrams generated by
L0 are higher order than tree-level diagrams with vertices from L0. In our case, one-loop contributions
to phonon amplitudes are suppressed by four powers of momenta compared to the tree graphs generated
by L0 as shown by Son and Wingate [15]. Using the above considerations we can write

W [An
µ] =

∫

d4xLeff

(

(Dµφ0[A
n
µ]), ηµν

)

+W1−loop(A
n
µ) + ...

=

∫

d4x
[

L0

(

X0

)

+ L2[A
n
µ] + L4[A

n
µ]
]

+W1−loop(A
n
µ) + ... ,

(17)

where X0 = Dµφ0Dµφ0. L0

(

X0

)

in Eq. 17 is the leading term (O(p0)), the second term is of O(p2),
the third and fourth are O(p4). The contribution of O(p0) involves either no derivatives on the external
fields or two derivatives compensated by a Goldstone propagator of O(p−2). Higher order contributions
necessarily involve derivatives acting on the external field An

µ(x). So we arrive at a very important result:
for very long wavelength external field (An

µ(x) → constant), only the first term in Eq. 17 survives., i.e.,

W [Ān
µ] =

∫

d4xL0(Ā
n
µĀ

µ n) = V T L0(Ā
n
µĀ

µ n) (18)

Now recall that ĀµĀµ = (mn + µn)2 so that µn =
√

ĀµĀµ −mn. Moreover, L0 depends on Dµφ only
through X . At the classical solution, for constant external field, one has X → X0 = ĀµĀµ. So we have
from Eqs. 18 and 12,

L0(X0) = P (
√

ĀµĀµ −mn) = P (
√

X0 −mn = µn) . (19)

The above relation fixes the functional dependence of L0 on the variable X once the functional depen-
dence of P on µn is known. So in general we have:

L0(X) = P (Y ≡
√
X −mn) . (20)

Finally we note that in the non-relativistic limit the relevant building block takes the form Y =
√

(mn + µn + ∂0φ)2 − (∂iφ)2 −mn ≃ µn + ∂0φ− (∂iφ)
2

2mn
[14, 15, 19].
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µ,ηµν ] = eiSeff |φ0=0+W1−loop+··· (15)

eiW1−loop =

∫

[dϕ]ei(
1
2

∫
d4xd4x′ϕ(x)ϕ(x′)

δ2Seff
δφ(x)δφ(x′)

|φ0+...) , (16)

where we have explicitly displayed only the quadratic (Gaussian) part of the functional integral in [dϕ]
which corresponds to the one-loop approximation. Let us now discuss this loop expansion in light of the
EFT power counting. The key observation, which is a generic feature of low-energy effective theories [18],
is the following: within the momentum (gradient) expansion of the EFT, loop diagrams generated by
L0 are higher order than tree-level diagrams with vertices from L0. In our case, one-loop contributions
to phonon amplitudes are suppressed by four powers of momenta compared to the tree graphs generated
by L0 as shown by Son and Wingate [15]. Using the above considerations we can write

W [An
µ] =

∫

d4xLeff

(

(Dµφ0[A
n
µ]), ηµν

)

+W1−loop(A
n
µ) + ...

=

∫

d4x
[

L0

(

X0

)

+ L2[A
n
µ] + L4[A

n
µ]
]

+W1−loop(A
n
µ) + ... ,

(17)

where X0 = Dµφ0Dµφ0. L0

(

X0

)

in Eq. 17 is the leading term (O(p0)), the second term is of O(p2),
the third and fourth are O(p4). The contribution of O(p0) involves either no derivatives on the external
fields or two derivatives compensated by a Goldstone propagator of O(p−2). Higher order contributions
necessarily involve derivatives acting on the external field An

µ(x). So we arrive at a very important result:
for very long wavelength external field (An

µ(x) → constant), only the first term in Eq. 17 survives., i.e.,

W [Ān
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n
µĀ
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